Polar stratospheric cloud

Source: Wikipedia, the free encyclopedia.
Polar stratospheric cloud
Precipitation
No
First documented appearance of a polar stratospheric cloud over Switzerland and Italy, seen from Brissago, Ticino, Switzerland
First documented appearance of a polar stratospheric cloud over Switzerland and Italy, seen from Brissago, Ticino, Switzerland on December 22, 2023

Polar stratospheric clouds (PSCs) are

mother of pearl, due to its iridescence
).

Formation

Polar stratospheric clouds over Western Norway

The stratosphere is very dry; unlike the

physical state (super-cooled liquid or ice) and chemical composition.[3]

Due to their high altitude and the curvature of the surface of the Earth, these clouds will receive sunlight from below the horizon and reflect it to the ground, shining brightly well before dawn or after dusk.

PSCs form at very low temperatures, below −78 °C (−108 °F). These temperatures can occur in the lower

lee waves
by mountains may locally cool the lower stratosphere and lead to the formation of lenticular (lens-shaped) PSCs.

Polar stratospheric cloud in Elverum, Norway.

polarising filter.[1][4]

Types

A lenticular type II (water) PSC showing iridescence

PSCs are classified into two main types each of which consists of several sub-types

A stratiform type I PSC (white cloud above the orange tropospheric clouds), showing fine horizontal structures in the veil

Only Type II clouds are necessarily nacreous[1] whereas Type I clouds can be iridescent under certain conditions, just as any other cloud. The World Meteorological Organization no longer uses the alpha-numeric nomenclature seen in this article, and distinguishes only between super-cooled stratiform acid-water PSCs and cirriform-lenticular water ice nacreous PSCs.[10]

See also

References

  1. ^ a b c "Polar stratospheric clouds / Observations". Australian Antarctic Division. Archived from the original on June 2, 2011.
  2. ^ "Why is the ozone hole over Antarctica?". United States Environmental Protection Agency. Archived from the original on 2006-09-30.
  3. (PDF) on 2018-03-14. Retrieved 2018-03-14.
  4. ^ a b c d e Maturilli, Maturilli. "Polar Stratospheric Clouds Above Spitsbergen". Alfred Wegener Institute for Polar and Marine Research. Archived from the original on 2007-08-24.
  5. ^ World Meteorological Organization, ed. (2017). "Nitric acid and water PSC, International Cloud Atlas". Retrieved 3 April 2019.
  6. ^ "Nacreous and Polar Stratospheric Clouds". atoptics.co.uk. 16 September 2023. Retrieved 24 December 2023.
  7. ^ "Scientific Assessment of Ozone Depletion" (PDF). World Meteorological Organization. 2002. Archived from the original (PDF) on 2020-03-13. Retrieved 2006-10-28.particularly section 3.2.2 (pages 3.21, i.e. 195 of the PDF file, and following).
  8. ^ "The presence of metastable HNO3/H2O solid phases in the stratosphere inferred from ER 2 data" (PDF). Journal of Geophysical Research. Archived from the original (PDF) on 2020-01-26. Retrieved 2012-08-17.
  9. ^ World Meteorological Organization, ed. (2017). "Nacreous PSC, International Cloud Atlas". Retrieved 3 April 2019.
  10. ^ World Meteorological Organization, ed. (2017). "Upper atmospheric clouds, International Cloud Atlas". Retrieved 31 July 2017.

External links

Research

News reports