Polyporales

Source: Wikipedia, the free encyclopedia.

Polyporales
Ganoderma applanatum
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Subclass: incertae sedis
Order: Polyporales
Gäum.
(1926)
Families

   Cystostereaceae
   Fomitopsidaceae
   

Fragiliporiaceae[1]

   
Ganodermataceae
   Gelatoporiaceae
   Meripilaceae
   Meruliaceae
   Phanerochaetaceae
   Polyporaceae
   Sparassidaceae
   Steccherinaceae
   Xenasmataceae

Synonyms[2]
  • Aphyllophorales Rea[3]
  • Coriolales Jülich (1981)
  • Fomitopsidales Jülich (1981)
  • Ganodermatales Jülich (1981)
  • Grifolales Jülich (1981)
  • Perenniporiales Jülich (1981)
  • Phaeolales Jülich (1981)
  • Poriales Locquin (1981)
  • Trametales Boidin, Mugnier & Canales (1998)[4]

The Polyporales are an

timber. Some of the Polyporales are commercially cultivated and marketed for use as food items or in traditional Chinese medicine
.

Taxonomy

History

The order was originally proposed in 1926 by Swiss

In a series of publications in 1932,

E.J.H. Corner explained the occurrence of different types of hyphae in the fruit bodies of polypore fungi. He introduced the concept of hyphal analysis, which later become a fundamental character in polypore taxonomy.[6][7][8]

The order Polyporales was not widely adopted by Gäumann's contemporaries; most mycologists and reference works preferring to use the catch-all, artificial order Aphyllophorales for polypores and other "non-gilled fungi". When an attempt was made to introduce a more natural, morphology-based classification of the fungi in the 1980s and 1990s, the order was still overlooked. A standard 1995 reference work placed most polypores and corticioid fungi in the Ganodermatales, Poriales, and Stereales.[9]

Current status

Simplified phylogenetic overview of the families (bolded) and clades (preceded with "/") recognized in Justo et al. 2017. Families marked with (*) were newly created.[10]

protein-coding genes
,
monophyletic group.[13][16][10] They are a member of the class Agaricomycetes, but have not been assigned to a subclass.[17] Though the precise boundaries of the order and its constituent families are yet to be resolved, it retains the core group of polypores in the family Polyporaceae, with additional species in the Fomitopsidaceae and Meripilaceae. It also includes polypores in the Ganodermataceae, which were previously assigned to their own separate order, the Ganodermatales, based on their distinctive basidiospore morphology. Corticioid fungi belonging to the Cystostereaceae, Meruliaceae, Phanerochaetaceae, and Xenasmataceae are also included, as are the cauliflower fungi in the Sparassidaceae.[18]

In an extensive molecular analysis, Manfred Binder and colleagues analyzed 6

taxonomic authorities and year of publication:[10]

Other families that putatively belong to the Polyporales, but for which molecular confirmation is absent or lacking, include

Fragiliporiaceae Y.C.Dai, B.K.Cui & C.L.Zhao (2015); Hymenogrammaceae Jülich (1981); and Phaeotrametaceae Popoff ex Piątek (2005).[10] The Nigrofomitaceae, formerly placed in the Polyporales, was shown to be nested as a distinct lineage within the Hymenochaetales.[19]

The family

hydnoid genera Antrodiella, Junghuhnia, and Steccherinum, as well as members of 12 other hydnoid and poroid genera that had been traditionally classified in the families Phanerochaetaceae, Polyporaceae, and Meruliaceae.[15] Several new genera were added to the Steccherinaceae in 2016–17.[20][21]

Ecology

The order is

Wood-decay Polyporales reduce the volume of dead wood in the forest and are an important component of the carbon cycle.[13] Wood is composed of primarily three types of tissue: lignin, cellulose, and hemicelluloses. White rot species of Polyporales are efficient degraders of the decay-resistant polymer lignin, leaving partially degraded cellulose as a residue.[13] Brown rot species break down the cellulose fibres, leaving a brittle, brown lignin residue. Brown-rot residues such as humus can remain in the soil for hundreds of years, increasing aeration and water-holding capacity.[23]

Peroxidase enzymes that degrade lignin, such as lignin peroxidase, manganese peroxidase, or versatile peroxidase, are present in all white-rot members of the Polyporales, but absent in brown-rot species.[16][24][25] Oxidase enzymes, including members of the glucose-methanol-choline oxidoreductase family, play a key role in the breakdown of plant polymers because they generate hydrogen peroxide, which acts as the ultimate oxidizer in both white-rot and brown-rot decay.[26]

Two species of Polyporales, Daedalea quercina and Fomitopsis pinicola, use paralysing toxins to destroy and colonize nematodes that feed on their fruit bodies.[27]

Importance

Sparassis crispa (left) and Laetiporus sulphureus are two edible Polyporales species

Many wood-decay fungi in the genera Fomes, Fomitopsis and Ganoderma are pathogenic, causing butt and root rot of living trees and consequent losses in forestry plantations. Several species, such as the mine fungus Fibroporia vaillantii, can rot and damage structural timber.[28]

Several of the Polyporales, notably

folk medicine for the treatment of various diseases.[33]

Some species, including several members of the genera Laetiporus and Sparassis, are used as food.[34] Blackfellow's bread, or Laccocephalum mylittae, is an edible that is prized by Aboriginal Australians.[35] Lentinus squarrosulus is collected and eaten in Asian and African communities.[36]

Fomitopsis betulina was formerly used in the manufacture of

purple dye polypore (Hapalopilus nidulans) are used in mushroom dyeing.[40]

Sequenced genomes

Several member of the Polyporales have had their

model species for researchers investigating the mechanism of white rot and brown rot, respectively.[45][46] As of 2017, there have been 46 Polyporales genomes sequenced, representing about 7% of all sequenced fungal genomes.[10]

Fossil record

Fossilized fruit bodies of a

Ganodermites libycus was reported from the Early Miocene (23–2.6 Ma) in the Libyan Desert. This specimen is the earliest convincing fossil evidence for the Polyporales.[48]

Molecular clock techniques have been used to estimate the age of the Polyporales, suggesting that the order evolved either during the late Jurassic, about 203–250 Ma,[14] or, in more recent study, about 114 Ma.[49]

Genera Incertae sedis

There are several genera classified in the Polyporales that for various reason have not been assigned to a specific family. They are incertae sedis with respect to familial placement. Some may be poorly known and/or not included in DNA phylogenetic studies, or when they have been, did not clearly group with any named family (In some cases a new family must be created rather than the placement clarified.). These include:

References

  1. S2CID 7252657
    .
  2. ^ "Trametales Boidin". MycoBank. International Mycological Association. Retrieved 2016-10-16.
  3. S2CID 4123814
    .
  4. ^ Boidin, J.; Mugnier, J.; Canales, R. (1998). "Taxonomie moleculaire des Aphyllophorales". Mycotaxon (in French). 66: 445–491 (see p. 487).
  5. S2CID 4096339
    .
  6. .
  7. .
  8. ^ Corner E.J.H. (1932). "The identification of the brown-root fungus". The Gardens' Bulletin; Straits Settlements. 5: 317–350.
  9. .
  10. ^ .
  11. PMID 17486968. "Archived copy" (PDF). Archived from the original (PDF) on 2011-07-06. Retrieved 2010-11-01.{{cite web}}: CS1 maint: archived copy as title (link
    )
  12. .
  13. ^ .
  14. ^ .
  15. ^ .
  16. ^ .
  17. .
  18. ^ "Index Fungorum - Search Page".
  19. PMID 29559823.Open access icon
  20. .
  21. .
  22. ^ Volk, Tom (2000). "An introduction to the characters used to identify poroid wood decay fungi". McIlvainea. 14 (2): 74–82.
  23. .
  24. .
  25. ^ .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. .
  37. . In Germany, this soft, pliable 'felt' has been harvested for many years for a secondary function, namely in the manufacture of hats, dress adornments and purses.
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. .
  50. ^ Hjortstam K, Ryvarden L (2005). "New taxa and new combinations in tropical corticioid fungi, (Basidiomycotina, Aphyllophorales)". Synopsis Fungorum. 20: 33–41.
  51. S2CID 89715790
    .
  52. .
  53. ^ Hjortstam K, Ryvarden L (2004). "Some new tropical genera and species of corticioid fungi (Basidiomycotina, Aphyllophorales)". Synopsis Fungorum. 18: 20–32.
  54. ^ Rick, J. (1940). "Resupinati Riograndenses II". Annales Mycologici. 38 (1): 56–60.
  55. S2CID 86045350
    .
  56. ^ Ryvarden L. (1987). "New and noteworthy polypores from tropical America". Mycotaxon. 28 (2): 525–41 (see p. 532).
  57. ^ Karsten, P.A. (1890). "Fragmenta mycologica XXXI". Hedwigia (in Latin). 29: 270–273.
  58. ^ Dhingra, G.S.; Singh, Avneet P. (2008). "Validation of Repetobasidiopsis and Trimitiella (Basidiomycetes)". Mycotaxon. 105: 421–422.
  59. PMID 27521631
    .
  60. ^ Wu SH, Yu ZH, Dai YC, Chen CT, Su CH, Chen LC, Hsu WC, Hwang GY (2004). "Taiwanofungus, a polypore new genus". Fungal Science (in Chinese). 19 (3–4): 109–116.

Media related to Polyporales at Wikimedia Commons Data related to Polyporales at Wikispecies