Potassium

This is a good article. Click here for more information.
Page semi-protected
Source: Wikipedia, the free encyclopedia.

Potassium, 19K
Potassium pearls (in paraffin oil, ~5 mm each)
Potassium
Appearancesilvery white, faint bluish-purple hue when exposed to air
Standard atomic weight Ar°(K)
Potassium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Na

K

Rb
argonpotassiumcalcium
New Latin kalium
Isotopes of potassium
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
39K 93.3%
stable
40K 0.0120% 1.248×109 y
β
40Ca
ε
40Ar
β+
40Ar
41K 6.73% stable
 Category: Potassium
| references

Potassium is a

colored flame. It is found dissolved in seawater (which is 0.04% potassium by weight),[9][10] and occurs in many minerals such as orthoclase, a common constituent of granites and other igneous rocks.[11]

Potassium is chemically very similar to

radioisotope
in the human body.

Potassium ions are vital for the functioning of all living cells. The transfer of potassium ions across nerve cell membranes is necessary for normal nerve transmission; potassium deficiency and excess can each result in numerous signs and symptoms, including an abnormal heart rhythm and various

electrocardiographic abnormalities. Fresh fruits and vegetables are good dietary sources of potassium. The body responds to the influx of dietary potassium, which raises serum
potassium levels, by shifting potassium from outside to inside cells and increasing potassium excretion by the kidneys.

Most industrial applications of potassium exploit the high solubility of its compounds in water, such as saltwater soap. Heavy crop production rapidly depletes the soil of potassium, and this can be remedied with agricultural fertilizers containing potassium, accounting for 95% of global potassium chemical production.[13]

Etymology

The English name for the element potassium comes from the word potash,[14] which refers to an early method of extracting various potassium salts: placing in a pot the ash of burnt wood or tree leaves, adding water, heating, and evaporating the solution. When Humphry Davy first isolated the pure element using electrolysis in 1807, he named it potassium, which he derived from the word potash.

The symbol K stems from kali, itself from the root word

Arabic: القَلْيَه al-qalyah 'plant ashes'. In 1797, the German chemist Martin Klaproth discovered "potash" in the minerals leucite and lepidolite, and realized that "potash" was not a product of plant growth but actually contained a new element, which he proposed calling kali.[15] In 1807, Humphry Davy produced the element via electrolysis: in 1809, Ludwig Wilhelm Gilbert proposed the name Kalium for Davy's "potassium".[16] In 1814, the Swedish chemist Berzelius advocated the name kalium for potassium, with the chemical symbol K.[17]

The English and French-speaking countries adopted the name Potassium, which was favored by Davy and French chemists Joseph Louis Gay-Lussac and Louis Jacques Thénard, whereas the other Germanic countries adopted Gilbert and Klaproth's name Kalium.[18] The "Gold Book" of the International Union of Pure and Applied Chemistry has designated the official chemical symbol as K.[19]

Properties

Physical

The flame test of potassium.

Potassium is the second least dense metal after lithium. It is a soft solid with a low melting point, and can be easily cut with a knife. Potassium is silvery in appearance, but it begins to tarnish toward gray immediately on exposure to air.[20] In a flame test, potassium and its compounds emit a lilac color with a peak emission wavelength of 766.5 nanometers.[21]

Neutral potassium atoms have 19 electrons, one more than the configuration of the noble gas argon. Because of its low first ionization energy of 418.8 kJ/mol, the potassium atom is much more likely to lose the last electron and acquire a positive charge, although negatively charged alkalide K ions are not impossible.[22] In contrast, the second ionization energy is very high (3052 kJ/mol).

Chemical

Potassium reacts with oxygen, water, and carbon dioxide components in air. With oxygen it forms

NaK) alloy are potent desiccants, although they are no longer used as such.[23]

Compounds

Structure of solid potassium superoxide (KO2).

Four oxides of potassium are well studied: potassium oxide (K2O), potassium peroxide (K2O2), potassium superoxide (KO2)[24] and potassium ozonide (KO3). The binary potassium-oxygen compounds react with water forming KOH.

KOH is a

hydrophilic character, as much as 1.21 kg of KOH can dissolve in a single liter of water.[25][26] Anhydrous KOH is rarely encountered. KOH reacts readily with carbon dioxide (CO2) to produce potassium carbonate (K2CO3), and in principle could be used to remove traces of the gas from air. Like the closely related sodium hydroxide, KOH reacts with fats to produce soaps
.

In general, potassium compounds are ionic and, owing to the high hydration energy of the K+ ion, have excellent water solubility. The main species in water solution are the aquo complexes [K(H2O)n]+ where n = 6 and 7.[27]

Potassium heptafluorotantalate (K2[TaF7]) is an intermediate in the purification of tantalum from the otherwise persistent contaminant of niobium.[28]

graphite intercalation compounds
, including KC8.

Isotopes

There are 25 known

macronutrient required for life[31]
on Earth.

40
K
occurs in natural potassium (and thus in some commercial salt substitutes) in sufficient quantity that large bags of those substitutes can be used as a radioactive source for classroom demonstrations. 40
K
is the radioisotope with the largest abundance
in the human body. In healthy animals and people, 40
K
represents the largest source of radioactivity, greater even than 14
C
. In a human body of 70 kg, about 4,400 nuclei of 40
K
decay per second.[32] The activity of natural potassium is 31 Bq/g.[33]

History

Potash

Potash is primarily a mixture of potassium salts because plants have little or no sodium content, and the rest of a plant's major mineral content consists of calcium salts of relatively low solubility in water. While potash has been used since ancient times, its composition was not understood.

Justus Liebig in 1840 that potassium is a necessary element for plants and that most types of soil lack potassium[38] caused a steep rise in demand for potassium salts. Wood-ash from fir trees was initially used as a potassium salt source for fertilizer, but, with the discovery in 1868 of mineral deposits containing potassium chloride near Staßfurt, Germany, the production of potassium-containing fertilizers began at an industrial scale.[39][40][41] Other potash deposits were discovered, and by the 1960s Canada became the dominant producer.[42][43]

Metal

Sir Humphry Davy
Pieces of potassium metal

Potassium metal was first isolated in 1807 by Humphry Davy, who derived it by electrolysis of molten

caustic soda, NaOH, or lye) rather than a plant salt, by a similar technique, demonstrating that the elements, and thus the salts, are different.[35][36][45][46] Although the production of potassium and sodium metal should have shown that both are elements, it took some time before this view was universally accepted.[36]

Because of the sensitivity of potassium to water and air,

salts to the metal, potassium is often used as the reductant in the preparation of finely divided metals from their salts by the Rieke method.[49]
Illustrative is the preparation of magnesium:

MgCl2 + 2 K → Mg + 2 KCl

Occurrence

Potassium in feldspar

Potassium is formed in

neon burning process.[51]

Potassium is the 20th most abundant element in the solar system and the 17th most abundant element by weight in the Earth. It makes up about 2.6% of the weight of the Earth's crust and is the seventh most abundant element in the crust.[52] The potassium concentration in seawater is 0.39 g/L[9] (0.039 wt/v%), about one twenty-seventh the concentration of sodium.[53][54]

Geology

Elemental potassium does not occur in nature because of its high reactivity. It reacts violently with water[47] and also reacts with oxygen. Orthoclase (potassium feldspar) is a common rock-forming mineral. Granite for example contains 5% potassium, which is well above the average in the Earth's crust. Sylvite (KCl), carnallite (KCl·MgCl2·6H2O), kainite (MgSO4·KCl·3H2O) and langbeinite (MgSO4·K2SO4) are the minerals found in large evaporite deposits worldwide. The deposits often show layers starting with the least soluble at the bottom and the most soluble on top.[54] Deposits of niter (potassium nitrate) are formed by decomposition of organic material in contact with atmosphere, mostly in caves; because of the good water solubility of niter the formation of larger deposits requires special environmental conditions.[55]

Commercial production

Mining

Sylvite from New Mexico
beneficiation waste heap in Hesse, Germany, consisting mostly of sodium chloride
.

Potassium salts such as

Potash Corporation of Saskatchewan, now Nutrien.[59] The water of the Dead Sea is used by Israel and Jordan as a source of potash, while the concentration in normal oceans is too low for commercial production at current prices.[57][58]

Chemical extraction

Several methods are used to separate potassium salts from sodium and magnesium compounds. The most-used method is fractional precipitation using the solubility differences of the salts. Electrostatic separation of the ground salt mixture is also used in some mines. The resulting sodium and magnesium waste is either stored underground or piled up in

slag heaps. Most of the mined potassium mineral ends up as potassium chloride after processing. The mineral industry refers to potassium chloride either as potash, muriate of potash, or simply MOP.[54]

Pure potassium metal can be isolated by electrolysis of its hydroxide in a process that has changed little since it was first used by Humphry Davy in 1807. Although the electrolysis process was developed and used in industrial scale in the 1920s, the thermal method by reacting sodium with potassium chloride in a chemical equilibrium reaction became the dominant method in the 1950s.

Na + KCl → NaCl + K

The production of

sodium potassium alloys is accomplished by changing the reaction time and the amount of sodium used in the reaction. The Griesheimer process employing the reaction of potassium fluoride with calcium carbide was also used to produce potassium.[54][60]

2 KF + CaC2 → 2 K + CaF2 + 2 C

kg) in 2010 when purchased by the tonne. Lower purity metal is considerably cheaper. The market is volatile because long-term storage of the metal is difficult. It must be stored in a dry inert gas atmosphere or anhydrous mineral oil to prevent the formation of a surface layer of potassium superoxide, a pressure-sensitive explosive that detonates when scratched. The resulting explosion often starts a fire difficult to extinguish.[61][62]

Cation identification

Potassium is now quantified by ionization techniques, but at one time it was quantitated by gravimetric analysis.

Reagents used to precipitate potassium salts include

potassium cobaltinitrite.[47]
The reaction with
sodium cobaltinitrite
is illustrative:

3 K+ + Na3[Co(NO2)6] → K3[Co(NO2)6] + 3 Na+

The potassium cobaltinitrite is obtained as a yellow solid.

Commercial uses

Fertilizer

Potassium sulfate/magnesium sulfate fertilizer

Potassium ions are an essential component of

hydroponic culture in the form of chloride (KCl), sulfate (K2SO4), or nitrate (KNO3), representing the 'K' in 'NPK'. Agricultural fertilizers consume 95% of global potassium chemical production, and about 90% of this potassium is supplied as KCl.[13] The potassium content of most plants ranges from 0.5% to 2% of the harvested weight of crops, conventionally expressed as amount of K2O. Modern high-yield agriculture depends upon fertilizers to replace the potassium lost at harvest. Most agricultural fertilizers contain potassium chloride, while potassium sulfate is used for chloride-sensitive crops or crops needing higher sulfur content. The sulfate is produced mostly by decomposition of the complex minerals kainite (MgSO4·KCl·3H2O) and langbeinite (MgSO4·K2SO4). Only a very few fertilizers contain potassium nitrate.[63] In 2005, about 93% of world potassium production was consumed by the fertilizer industry.[58] Furthermore, potassium can play a key role in nutrient cycling by controlling litter composition.[64]

Medical use

Potassium citrate

Potassium chloride

Potassium, in the form of potassium chloride is used as a medication to treat and prevent

slow injection into a vein or by mouth.[68]

Food additives

Potassium sodium tartrate (KNaC4H4O6,

Rochelle salt) is a main constituent of some varieties of baking powder; it is also used in the silvering of mirrors. Potassium bromate (KBrO3) is a strong oxidizer (E924), used to improve dough strength and rise height. Potassium bisulfite (KHSO3) is used as a food preservative, for example in wine and beer-making (but not in meats). It is also used to bleach textiles and straw, and in the tanning of leathers.[69][70]

Industrial

Major potassium chemicals are potassium hydroxide, potassium carbonate, potassium sulfate, and potassium chloride. Megatons of these compounds are produced annually.[71]

KOH is a strong base, which is used in industry to neutralize strong and weak

esters.[72][73]

nitriles. Potassium carbonate (K2CO3 or potash) is used in the manufacture of glass, soap, color TV tubes, fluorescent lamps, textile dyes and pigments.[74] Potassium permanganate (KMnO4) is an oxidizing, bleaching and purification substance and is used for production of saccharin. Potassium chlorate (KClO3) is added to matches and explosives. Potassium bromide (KBr) was formerly used as a sedative and in photography.[13]

While

chromate ion rather than to that of the potassium ion.[76]

Niche uses

There are thousands of uses of various potassium compounds. One example is potassium superoxide, KO2, an orange solid that acts as a portable source of oxygen and a carbon dioxide absorber. It is widely used in respiration systems in mines, submarines and spacecraft as it takes less volume than the gaseous oxygen.[77][78]

4 KO2 + 2 CO2 → 2 K2CO3 + 3 O2

Another example is

potassium cobaltinitrite, K3[Co(NO2)6], which is used as artist's pigment under the name of Aureolin or Cobalt Yellow.[79]

The stable isotopes of potassium can be laser cooled and used to probe fundamental and technological problems in quantum physics. The two bosonic isotopes possess convenient Feshbach resonances to enable studies requiring tunable interactions, while 40
K
is one of only two stable fermions amongst the alkali metals.[80]

Laboratory uses

An

NaK is a liquid used as a heat-transfer medium and a desiccant for producing dry and air-free solvents. It can also be used in reactive distillation.[81] The ternary alloy of 12% Na, 47% K and 41% Cs has the lowest melting point of −78 °C of any metallic compound.[20]

Metallic potassium is used in several types of magnetometers.[82]

Biological role

Potassium is the eighth or ninth most common element by mass (0.2%) in the human body, so that a 60 kg adult contains a total of about 120 g of potassium.

CHON elements).[84] Potassium ions are present in a wide variety of proteins and enzymes.[85]

Biochemical function

Potassium levels influence multiple physiological processes, including[86][87][88]

  • resting cellular-membrane potential and the propagation of action potentials in neuronal, muscular, and cardiac tissue. Due to the electrostatic and chemical properties, K+ ions are larger than Na+ ions, and ion channels and pumps in cell membranes can differentiate between the two ions, actively pumping or passively passing one of the two ions while blocking the other.[89]
  • hormone secretion and action
  • vascular tone
  • systemic blood pressure control
  • gastrointestinal motility
  • acid–base homeostasis
  • glucose and insulin metabolism
  • mineralocorticoid action
  • renal concentrating ability
  • fluid and electrolyte balance
  • local cortical monoaminergic norepinephrine, serotonin, and dopamine levels, and through them, sleep/wake balance, and spontaneous activity.[90]

Homeostasis

Potassium homeostasis denotes the maintenance of the total body potassium content, plasma potassium level, and the ratio of the intracellular to extracellular potassium concentrations within narrow limits, in the face of pulsatile intake (meals), obligatory renal excretion, and shifts between intracellular and extracellular compartments.

Plasma levels

Plasma potassium is normally kept at 3.5 to 5.5 millimoles (mmol) [or milliequivalents (mEq)] per liter by multiple mechanisms.[91] Levels outside this range are associated with an increasing rate of death from multiple causes,[92] and some cardiac, kidney,[93] and lung diseases progress more rapidly if serum potassium levels are not maintained within the normal range.

An average meal of 40–50 mmol presents the body with more potassium than is present in all plasma (20–25 mmol). This surge causes the plasma potassium to rise up to 10% before clearance by renal and extrarenal mechanisms.[94]

cardiac arrhythmia.[96]

Control mechanisms

Potassium content in the plasma is tightly controlled by four basic mechanisms, which have various names and classifications. These are:

  1. a reactive negative-feedback system,
  2. a reactive feed-forward system,
  3. a predictive or
    circadian
    system, and
  4. an internal or cell membrane transport system.

Collectively, the first three are sometimes termed the "external potassium homeostasis system";[97] and the first two, the "reactive potassium homeostasis system".

Renal filtration, reabsorption, and excretion

Renal handling of potassium is closely connected to sodium handling. Potassium is the major cation (positive ion) inside animal cells (150 mmol/L, 4.8 g/L), while sodium is the major cation of

This filtering involves about 600 mg of sodium and 33 mg of potassium. Since only 1–10 mg of sodium and 1–4 mg of potassium are likely to be replaced by diet, renal filtering must efficiently reabsorb the remainder from the plasma.

Sodium is reabsorbed to maintain extracellular volume, osmotic pressure, and serum sodium concentration within narrow limits. Potassium is reabsorbed to maintain serum potassium concentration within narrow limits.

Donnan equilibrium,[104] the urine can never sink below the concentration of potassium in serum except sometimes by actively excreting water at the end of the processing. Potassium is excreted twice and reabsorbed three times before the urine reaches the collecting tubules.[105] At that point, urine usually has about the same potassium concentration as plasma. At the end of the processing, potassium is secreted one more time if the serum levels are too high.[citation needed
]

With no potassium intake, it is excreted at about 200 mg per day until, in about a week, potassium in the serum declines to a mildly deficient level of 3.0–3.5 mmol/L.[106] If potassium is still withheld, the concentration continues to fall until a severe deficiency causes eventual death.[107]

The potassium moves passively through pores in the cell membrane. When ions move through ion transporters (pumps) there is a gate in the pumps on both sides of the cell membrane and only one gate can be open at once. As a result, approximately 100 ions are forced through per second. Ion channels have only one gate, and there only one kind of ion can stream through, at 10 million to 100 million ions per second.[108] Calcium is required to open the pores,[109] although calcium may work in reverse by blocking at least one of the pores.[110] Carbonyl groups inside the pore on the amino acids mimic the water hydration that takes place in water solution[111] by the nature of the electrostatic charges on four carbonyl groups inside the pore.[112]

Nutrition

Dietary recommendations

The U.S.

Adequate Intakes
(AIs) for when there is not sufficient information to set EARs and RDAs.

For both males and females under 9 years of age, the AIs for potassium are: 400 mg of potassium for 0 to 6-month-old infants, 860 mg of potassium for 7 to 12-month-old infants, 2,000 mg of potassium for 1 to 3-year-old children, and 2,300 mg of potassium for 4 to 8-year-old children.

For males 9 years of age and older, the AIs for potassium are: 2,500 mg of potassium for 9 to 13-year-old males, 3,000 mg of potassium for 14 to 18-year-old males, and 3,400 mg for males that are 19 years of age and older.

For females 9 years of age and older, the AIs for potassium are: 2,300 mg of potassium for 9 to 18-year-old females, and 2,600 mg of potassium for females that are 19 years of age and older.

For pregnant and lactating females, the AIs for potassium are: 2,600 mg of potassium for 14 to 18-year-old pregnant females, 2,900 mg for pregnant females that are 19 years of age and older; furthermore, 2,500 mg of potassium for 14 to 18-year-old lactating females, and 2,800 mg for lactating females that are 19 years of age and older. As for safety, the NAM also sets

tolerable upper intake levels (ULs) for vitamins and minerals, but for potassium the evidence was insufficient, so no UL was established.[113][114]

As of 2004, most Americans adults consume less than 3,000 mg.[115]

Likewise, in the European Union, in particular in Germany, and Italy, insufficient potassium intake is somewhat common.[116] The British National Health Service recommends a similar intake, saying that adults need 3,500 mg per day and that excess amounts may cause health problems such as stomach pain and diarrhea.[117]

In 2019, the National Academies of Sciences, Engineering, and Medicine revised the Adequate Intake for potassium to 2,600 mg/day for females 19 years of age and older who are not pregnant or lactating, and 3,400 mg/day for males 19 years of age and older.[118][119]

Food sources

Potassium is present in all fruits, vegetables, meat and fish. Foods with high potassium concentrations include yam, parsley, dried apricots, milk, chocolate, all nuts (especially almonds and pistachios), potatoes, bamboo shoots, bananas, avocados, coconut water, soybeans, and bran.[120]

The

white beans, plantains, and many other dietary sources of potassium, ranked in descending order according to potassium content. A day's worth of potassium is in 5 plantains or 11 bananas.[121]

Deficient intake

Diets low in potassium can lead to hypertension[122] and hypokalemia.

Supplementation

Supplements of potassium are most widely used in conjunction with

loop diuretics), because this promotes increased distal tubular potassium secretion, with resultant increased potassium excretion.[medical citation needed] A variety of prescription and over-the counter supplements are available.[citation needed] Potassium chloride may be dissolved in water, but the salty/bitter taste makes liquid supplements unpalatable.[123] Typical doses range from 10 mmol (400 mg), to 20 mmol (800 mg).[medical citation needed] Potassium is also available in tablets or capsules, which are formulated to allow potassium to leach slowly out of a matrix, since very high concentrations of potassium ion that occur adjacent to a solid tablet can injure the gastric or intestinal mucosa.[68][medical citation needed] For this reason, non-prescription potassium pills are limited by law in the US to a maximum of 99 mg of potassium.[citation needed
]

Potassium supplementation can also be combined with other metabolites, such as citrate or chloride, to achieve specific clinical effects.[124]

Potassium supplements may be employed to mitigate the impact of hypertension, thereby reducing cardiovascular risk.[125] Potassium chloride and potassium bicarbonate may be useful to control mild hypertension.[126] In 2020, potassium was the 33rd most commonly prescribed medication in the U.S., with more than 17 million prescriptions.[127][128] Potassium supplementation has been shown to reduce both systolic and diastolic blood pressure in individuals with essential hypertension.[124]

Additionally, potassium supplements may be employed with the aim of preventing the formation of kidney stones, a condition that can lead to renal complications if left untreated. Low potassium levels can lead to decreased calcium reabsorption in the kidneys, increasing the risk of elevated urine calcium and the formation of kidney stones. By maintaining adequate potassium levels, this risk can be reduced.[124]

The mechanism of action of potassium involves various types of transporters and channels that facilitate its movement across cell membranes. This process can lead to an increase in the pumping of hydrogen ions. This, in turn, can escalate the production of gastric acid, potentially contributing to the development of gastric ulcers.[124]

Potassium has a role in bone health. It contributes to the acid-base equilibrium in the body and helps protect bone tissue. Potassium salts produce an alkaline component that can aid in maintaining bone health.[124]

For individuals with diabetes, potassium supplementation may be necessary, particularly for those with type 2 diabetes. Potassium is essential for the secretion of insulin by pancreatic beta cells, which helps regulate glucose levels. Without sufficient potassium, insulin secretion is compromised, leading to hyperglycemia and worsening diabetes.[124]

Excessive potassium intake can have adverse effects, such as gastrointestinal discomfort and disturbances in heart rhythm.[124]

Potassium supplementation can have side effects on ulceration, particularly in relation to peptic ulcer disease. Potassium channels have the potential to increase gastric acid secretion, which can lead to an increased risk of ulcerations. Medications used for peptic ulcer disease, known as "proton pump inhibitors", work by inhibiting potassium pumps that activate the H/K ATPase. This inhibition helps to reduce the secretion of hydrochloric acid into the parietal cell, thereby decreasing acidic synthesis and lowering the risk of ulcers. Nicorandil, a drug used for the treatment of ischemic heart disease, can stimulate nitrate and potassium ATP channels, and as a result, it has been associated with side effects such as GI, oral, and anal ulcers. Prolonged and chronic use of potassium supplements has been linked to more severe side effects, including ulcers outside of the gastrointestinal (GI) tract. Close monitoring is necessary for patients who are also taking angiotensinogen-converting enzyme inhibitors, angiotensin receptor blockers, or potassium-sparing diuretics.[124]

Detection by taste buds

Potassium can be detected by taste because it triggers three of the five types of taste sensations, according to concentration. Dilute solutions of potassium ions taste sweet, allowing moderate concentrations in milk and juices, while higher concentrations become increasingly bitter/alkaline, and finally also salty to the taste. The combined bitterness and saltiness of high-potassium solutions makes high-dose potassium supplementation by liquid drinks a palatability challenge.[123][129]

Precautions

Potassium
Hazards
GHS labelling:
GHS02: FlammableGHS05: Corrosive
Danger
H260, H314
P223, P231+P232, P280, P305+P351+P338, P370+P378, P422[130]
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
3
3
2

Potassium metal can react violently with water producing KOH and hydrogen gas.

2 K(s) + 2 H2O(l) → 2 KOH(aq) + H2(g)↑
A reaction of potassium metal with water. Hydrogen is produced, and with potassium vapor, burns with a pink or lilac flame. Strongly alkaline potassium hydroxide is formed in solution.

This reaction is exothermic and releases sufficient heat to ignite the resulting hydrogen in the presence of oxygen. Finely powdered potassium ignites in air at room temperature. The bulk metal ignites in air if heated. Because its density is 0.89 g/cm3, burning potassium floats in water that exposes it to atmospheric oxygen. Many common fire extinguishing agents, including water, either are ineffective or make a potassium fire worse. Nitrogen, argon, sodium chloride (table salt), sodium carbonate (soda ash), and silicon dioxide (sand) are effective if they are dry. Some Class D dry powder extinguishers designed for metal fires are also effective. These agents deprive the fire of oxygen and cool the potassium metal.[131]

During storage, potassium forms peroxides and superoxides. These peroxides may react violently with organic compounds such as oils. Both peroxides and superoxides may react explosively with metallic potassium.[132]

Because potassium reacts with water vapor in the air, it is usually stored under anhydrous mineral oil or kerosene. Unlike lithium and sodium, potassium should not be stored under oil for longer than six months, unless in an inert (oxygen-free) atmosphere, or under vacuum. After prolonged storage in air dangerous shock-sensitive peroxides can form on the metal and under the lid of the container, and can detonate upon opening.[133]

Ingestion of large amounts of potassium compounds can lead to hyperkalemia, strongly influencing the cardiovascular system.[134][135] Potassium chloride is used in the U.S. for lethal injection executions.[134]

See also

References

  1. ^ "Standard Atomic Weights: Potassium". CIAAW. 1979.
  2. ISSN 1365-3075
    .
  3. ^ .
  4. ^ .
  5. .
  6. .
  7. .
  8. ^ Augustyn A. "Potassium/ Chemical element". Encyclopedia Britannica. Archived from the original on 2019-07-09. Retrieved 2019-04-17. Potassium Physical properties
  9. ^ a b Webb DA (April 1939). "The Sodium and Potassium Content of Sea Water" (PDF). The Journal of Experimental Biology (2): 183. Archived (PDF) from the original on 2019-09-24. Retrieved 2017-07-23.
  10. ^ Anthoni J (2006). "Detailed composition of seawater at 3.5% salinity". seafriends.org.nz. Archived from the original on 2019-01-18. Retrieved 2011-09-23.
  11. from the original on 2021-06-07. Retrieved 2021-06-07.
  12. ^ a b Marggraf AS (1761). Chymische Schriften. p. 167.
  13. ^ a b c d e Greenwood, p. 73
  14. .
  15. ^ Klaproth, M. (1797) "Nouvelles données relatives à l'histoire naturelle de l'alcali végétal" (New data regarding the natural history of the vegetable alkali), Mémoires de l'Académie royale des sciences et belles-lettres (Berlin), pp. 9–13 ; see p. 13. Archived 2020-01-24 at the Wayback Machine From p. 13: "Cet alcali ne pouvant donc plus être envisagé comme un produit de la végétation dans les plantes, occupe une place propre dans la série des substances primitivement simples du règne minéral, &I il devient nécessaire de lui assigner un nom, qui convienne mieux à sa nature.
    La dénomination de Potasche (potasse) que la nouvelle nomenclature françoise a consacrée comme nom de tout le genre, ne sauroit faire fortune auprès des chimistes allemands, qui sentent à quel point la dérivation étymologique en est vicieuse. Elle est prise en effet de ce qu'anciennement on se servoit pour la calcination des lessives concentrées des cendres, de pots de fer (pott en dialecte de la Basse-Saxe) auxquels on a substitué depuis des fours à calciner.
    Je propose donc ici, de substituer aux mots usités jusqu'ici d'alcali des plantes, alcali végétal, potasse, &c. celui de kali, & de revenir à l'ancienne dénomination de natron, au lieu de dire alcali minéral, soude &c."
    (This alkali [i.e., potash] — [which] therefore can no longer be viewed as a product of growth in plants — occupies a proper place in the originally simple series of the mineral realm, and it becomes necessary to assign it a name that is better suited to its nature.
    The name of "potash" (potasse), which the new French nomenclature has bestowed as the name of the entire species [i.e., substance], would not find acceptance among German chemists, who feel to some extent [that] the etymological derivation of it is faulty. Indeed, it is taken from [the vessels] that one formerly used for the roasting of washing powder concentrated from cinders: iron pots (pott in the dialect of Lower Saxony), for which roasting ovens have been substituted since then.
    Thus I now propose to substitute for the until now common words of "plant alkali", "vegetable alkali", "potash", etc., that of kali ; and to return to the old name of natron instead of saying "mineral alkali", "soda", etc.)
  16. doi:10.1002/andp.18090310202. p. 157: In unserer deutschen Nomenclatur würde ich die Namen Kalium und Natronium vorschlagen, wenn man nicht lieber bei den von Herrn Erman gebrauchten und von mehreren angenommenen Benennungen Kali-Metalloid and Natron-Metalloid, bis zur völligen Aufklärung der chemischen Natur dieser räthzelhaften Körper bleiben will. Oder vielleicht findet man es noch zweckmässiger fürs Erste zwei Klassen zu machen, Metalle und Metalloide, und in die letztere Kalium und Natronium zu setzen. — Gilbert. (In our German nomenclature, I would suggest the names Kalium and Natronium, if one would not rather continue with the appellations Kali-metalloid and Natron-metalloid which are used by Mr. Erman [i.e., German physics professor Paul Erman
    (1764–1851)] and accepted by several [people], until the complete clarification of the chemical nature of these puzzling substances. Or perhaps one finds it yet more advisable for the present to create two classes, metals and metalloids, and to place Kalium and Natronium in the latter — Gilbert.)
  17. ^ Berzelius, J. Jacob (1814) Försök, att, genom användandet af den electrokemiska theorien och de kemiska proportionerna, grundlägga ett rent vettenskapligt system för mineralogien [Attempt, by the use of electrochemical theory and chemical proportions, to found a pure scientific system for mineralogy]. Stockholm, Sweden: A. Gadelius., p. 87.
  18. ^ 19. Kalium (Potassium) – Elementymology & Elements Multidict Archived 2019-02-18 at the Wayback Machine. vanderkrogt.net
  19. ^ McNaught, A. D. and Wilkinson,A. eds. (1997). Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). IUPAC. Blackwell Scientific Publications, Oxford.
  20. ^ a b Greenwood, p. 76
  21. ^ Greenwood, p. 75
  22. .
  23. .
  24. .
  25. .
  26. ^ Schultz, p. 94
  27. .
  28. .
  29. ^
  30. .
  31. .
  32. ^ "Radiation and Radioactive Decay. Radioactive Human Body". Harvard Natural Sciences Lecture Demonstrations. Archived from the original on May 28, 2023. Retrieved July 2, 2016.
  33. ISBN 978-92-5-102877-3.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  34. ^ du Monceau HL (1702–1797). "Sur la Base de Sel Marin". Mémoires de l'Académie Royale des Sciences (in French): 65–68. Archived from the original on 2019-08-21. Retrieved 2011-05-09.
  35. ^ .
  36. ^ .
  37. .
  38. ^ Liebig, Justus von (1840). Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie (in German). F. Vieweg und Sohn.
  39. ^ Cordel, Oskar (1868). Die Stassfurter Kalisalze in der Landwirthschalt: Eine Besprechung ... (in German). L. Schnock.
  40. ^ Birnbaum K (1869). Die Kalidüngung in ihren Vortheilen und Gefahren (in German).
  41. .
  42. .
  43. .
  44. .
  45. .
  46. .
  47. ^ .
  48. ^ Burkhardt, p. 32
  49. S2CID 92794
    .
  50. .
  51. .
  52. ^ Greenwood, p. 69
  53. ^ .
  54. ^ .
  55. ^ Ross WH (1914). "The Origin of Nitrate Deposits". Popular Science. Bonnier Corporation. pp. 134–145.
  56. .
  57. ^ a b Ober JA. "Mineral Commodity Summaries 2008:Potash" (PDF). United States Geological Survey. Archived (PDF) from the original on 2019-01-11. Retrieved 2008-11-20.
  58. ^ a b c Ober JA. "Mineral Yearbook 2006:Potash" (PDF). United States Geological Survey. Archived (PDF) from the original on 2008-12-17. Retrieved 2008-11-20.
  59. .
  60. .
  61. ^ Burkhardt, p. 34
  62. .
  63. .
  64. .
  65. ^ "Potassium Uses, Side Effects & Interactions". Drugs.com. Archived from the original on 2022-04-30. Retrieved 2022-04-30.
  66. .
  67. ^ "Potassium chloride medical facts from Drugs.com". www.drugs.com. Archived from the original on 18 January 2017. Retrieved 14 January 2017.
  68. ^ .
  69. .
  70. .
  71. ^ Schultz
  72. .
  73. ^ Schultz, p. 95
  74. ^ Schultz, p. 99
  75. .
  76. .
  77. ^ Greenwood, p. 74
  78. .
  79. from the original on 2023-01-19. Retrieved 2016-01-08.
  80. .
  81. .
  82. .
  83. .
  84. .
  85. .
  86. .
  87. .
  88. .
  89. .
  90. .
  91. .
  92. .
  93. .
  94. .
  95. .
  96. .
  97. .
  98. .
  99. .
  100. ^ Potts, W. T. W., Parry, G. (1964). Osmotic and ionic regulation in animals. Pergamon Press.
  101. PMID 14902792
    .
  102. .
  103. .
  104. .
  105. .
  106. .
  107. .
  108. .
  109. S2CID 205029269. Archived from the original
    (PDF) on 2009-04-24.
  110. ; includes a detailed picture of atoms in the pump.
  111. S2CID 205022645. Archived from the original
    (PDF) on Oct 17, 2021.
  112. (PDF) from the original on Mar 26, 2023.
  113. from the original on 2019-05-13. Retrieved 2019-05-13.
  114. S2CID 104464967. Archived from the original on May 9, 2019. Retrieved May 13, 2019. {{cite book}}: |website= ignored (help
    )
  115. ISBN 978-0-309-53049-1. Archived from the original on 2011-10-06.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  116. .
  117. ^ "Vitamins and minerals". National Health Service (NHS). 18 November 2021. Archived from the original on 3 April 2019. Retrieved 13 November 2022.
  118. ^ "Sodium and Potassium Dietary Reference Intake Values Updated in New Report; Introduces New Category for Sodium Based on Chronic Disease Risk Reduction" (Press release). National Academies of Sciences, Engineering, and Medicine. 5 March 2019. Archived from the original on 29 January 2022. Retrieved 29 January 2022.
  119. S2CID 104464967. Bookshelf ID: NBK538102. Archived
    from the original on 4 August 2022. Retrieved 13 November 2022.
  120. ^ "Potassium Food Charts". Asia Pacific Journal of Clinical Nutrition. Archived from the original on 2021-04-29. Retrieved 2011-05-18.
  121. ^ "Potassium Content of Selected Foods per Common Measure, sorted by nutrient content" (PDF). USDA National Nutrient Database for Standard Reference, Release 20. Archived from the original (PDF) on December 17, 2008.
  122. S2CID 25937399
    .
  123. ^ .
  124. ^ .
  125. .
  126. .
  127. ^ "The Top 300 of 2020". ClinCalc. Archived from the original on 12 February 2021. Retrieved 7 October 2022.
  128. ^ "Potassium Chloride - Drug Usage Statistics". ClinCalc. Archived from the original on 8 October 2022. Retrieved 7 October 2022.
  129. .
  130. ^ "Potassium 244856". Sigma Aldrich. Archived from the original on 2018-10-01. Retrieved 2018-10-01.
  131. .
  132. ^ "DOE Handbook-Alkali Metals Sodium, Potassium, NaK, and Lithium". Hss.doe.gov. Archived from the original on 2010-09-28. Retrieved 2010-10-16.
  133. ^ Wray TK. "Danger: peroxidazable chemicals" (PDF). Environmental Health & Public Safety, North Carolina State University. Archived from the original on 2016-07-29.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  134. ^ .
  135. .

Bibliography

External links