Proline oxidase

Source: Wikipedia, the free encyclopedia.
PRODH
Identifiers
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001195226
NM_016335

NM_011172

RefSeq (protein)

NP_001182155
NP_057419

NP_035302

Location (UCSC)Chr 22: 18.91 – 18.94 MbChr 16: 17.88 – 17.91 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Proline dehydrogenase, mitochondrial is an enzyme that in humans is encoded by the PRODH gene.[5][6][7]

The protein encoded by this gene is a

mitochondrial proline dehydrogenase which catalyzes the first step in proline catabolism. Deletion of this gene has been associated with type I hyperprolinemia. The gene is located on chromosome 22q11.21, a region which has also been associated with the contiguous gene deletion syndromes: DiGeorge syndrome and CATCH22 syndrome.[7]

Function

Proline oxidase, or proline dehydrogenase, functions as the initiator of the proline cycle.

rapamycin, stimulated degradation of proline and increased PRODH catalytic activity. Under these conditions PRODH was responsible, at least in part, for maintenance of ATP levels. Activation of AMP-activated protein kinase (AMPK), the cellular energy sensor, by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), also markedly upregulated PRODH and increased PRODH-dependent ATP levels, further supporting its role during stress. Glucose deprivation increased intracellular proline levels, and expression of PRODH activated the pentose phosphate pathway. Therefore, the induction of the proline cycle under conditions of nutrient stress may be a mechanism by which cells switch to a catabolic mode for maintaining cellular energy levels.[8]

Clinical significance

Mutations in the PRODH gene are associated with Proline Dehydrogenase deficiency. Many case studies have reported on this genetic disorder. In one such case study, 4 unrelated patients with HPI and a severe neurologic phenotype were shown to have the following common features: psychomotor delay from birth, often associated with hypotonia, severe language delay, autistic features, behavioral problems, and seizures. One patient who was heterozygous for a 22q11 microdeletion also had dysmorphic features. Four previously reported patients with HPI and neurologic involvement had a similar phenotype. This case study showed that Hyperprolinemia, Type I (HPI) may not always be a benign condition, and that the severity of the clinical phenotype appears to correlate with the serum proline level.[9] Still, in another case study, clinical features from 4 unrelated patients included early motor and cognitive developmental delay, speech delay, autistic features, hyperactivity, stereotypic behaviors, and seizures. All patients had increased plasma and urine proline levels. All patients had biallelic mutations in the PRODH gene, often with several variants on the same allele. Residual enzyme activity ranged from null in the most severely affected patient to 25 to 30% in those with a relatively milder phenotype.[10]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000100033Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000003526Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. S2CID 13473036
    .
  6. .
  7. ^ a b "Entrez Gene: PRODH proline dehydrogenase (oxidase) 1".
  8. PMID 19415679
    .
  9. .
  10. .

Further reading

External links