Electrochemical gradient

Source: Wikipedia, the free encyclopedia.
(Redirected from
Proton gradient
)
Diagram of ion concentrations and charge across a semi-permeable cellular membrane.

An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts:

  • The chemical gradient, or difference in solute concentration across a membrane.
  • The electrical gradient, or difference in charge across a membrane.

When there are unequal concentrations of an ion across a permeable membrane, the ion will move across the membrane from the area of higher concentration to the area of lower concentration through simple diffusion. Ions also carry an electric charge that forms an electric potential across a membrane. If there is an unequal distribution of charges across the membrane, then the difference in electric potential generates a force that drives ion diffusion until the charges are balanced on both sides of the membrane.

Electrochemical gradients are essential to the operation of batteries and other electrochemical cells, photosynthesis and cellular respiration, and certain other biological processes.

Overview

Electrochemical energy is one of the many interchangeable forms of

neural synapses quickly transmit information.[citation needed
]

An electrochemical gradient has two components: a differential concentration of electric charge across a membrane and a differential concentration of chemical species across that same membrane. In the former effect, the concentrated charge attracts charges of the opposite sign; in the latter, the concentrated species tends to diffuse across the membrane to an equalize concentrations. The combination of these two phenomena determines the thermodynamically-preferred direction for an ion's movement across the membrane.[2]: 403 [3]

The combined effect can be quantified as a gradient in the

] with

Sometimes, the term "electrochemical potential" is abused to describe the electric potential generated by an ionic concentration gradient; that is, φ.

An electrochemical gradient is analogous to the water

pump water up into the lake above the dam, and chemical energy can be used to create electrochemical gradients.[4][5]

Chemistry