Psocodea

Source: Wikipedia, the free encyclopedia.

Psocodea
Temporal range: 163–0 
Ma
Late Jurassic – Recent
An unidentified bark louse in the family Stenopsocidae
Human body louse
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
(unranked): Paraneoptera
Order: Psocodea
Hennig, 1966
Suborders[1]

Psocodea is a

paraphyletic.[5][6] They are often regarded as the most primitive of the hemipteroids.[7] Psocodea contains around 11,000 species, divided among four suborders and more than 70 families.[1][2][8]
They range in size from 1–10 millimetres (0.04–0.4 in) in length.

The species known as booklice received their common name because they are commonly found amongst old books—they feed upon the paste used in binding. The barklice are found on trees, feeding on algae and lichen.

Anatomy and biology

Psocids are small, scavenging insects with a relatively generalized body plan. They feed primarily on fungi, algae, lichen, and organic detritus in nature but are also known to feed on starch-based household items like grains, wallpaper glue and book bindings.

ocelli. Their bodies are soft with a segmented abdomen.[10] Some species can spin silk from glands in their mouth.[11] They may festoon large sections of trunk and branches in dense swathes of silk.[12]

Some psocids have small ovipositors that are up to 1.5 times as long as the hindwings, and all four wings have a relatively simple

lice. The abdomen has nine segments, and no cerci.[11]

There is often considerable variation in the appearance of individuals within the same species. Many have no wings or ovipositors, and may have a different shape to the thorax. Other, more subtle, variations are also known, such as changes to the development of the

parthenogenic, and the presence of males may even vary between different races of the same species.[11]

Psocids lay their eggs in minute crevices or on foliage, although a few species are known to be

viviparous. The young are born as miniature, wingless versions of the adult. These nymphs typically molt six times before reaching full adulthood. The total lifespan of a psocid is rarely more than a few months.[11]

Booklice range from approximately 1 mm to 2 mm in length (1/25″ to 1/13″). Some species are wingless and they are easily mistaken for

bedbug nymphs and vice versa. Booklouse eggs take two to four weeks to hatch and can reach adulthood approximately two months later. Adult booklice can live for six months. Besides damaging books, they also sometimes infest food storage areas, where they feed on dry, starchy materials. Although some psocids feed on starchy household products, the majority of psocids are woodland insects with little to no contact with humans, therefore they are of little economic importance. They are scavengers and do not bite humans.[13]

Psocids can affect the ecosystems in which they reside. Many psocids can affect decomposition by feeding on detritus, especially in environments with lower densities of predacious micro arthropods that may eat psocids.[14] The nymph of a psocid species, Psilopsocus mimulus, is the first known wood-boring psocopteran. These nymphs make their own burrows in woody material, rather than inhabiting vacated, existing burrows. This boring activity can create habitats that other organisms may use.[15]

Interaction with humans

Some species of psocids, such as Liposcelis bostrychophila, are common pests of stored products.[16] Psocids, among other arthropods, have been studied to develop new pest control techniques in food manufacturing. One study found that modified atmospheres during packing (MAP) helped to control the reoccurrence of pests during the manufacturing process and prevented further infestation in the final products that go to consumers.[17]

External phylogeny

Psocodea has been recovered as a

paraphyletic.[6]

Here is a simple cladogram showing the traditional relationships with a monophyletic Paraneoptera:[6]

Neoptera

Polyneoptera

Eumetabola

Holometabola

Paraneoptera

Psocodea

Condylognatha

Thysanoptera
(thrips)

Hemiptera (true bugs)

Here is an alternative cladogram showing Paraneoptera as paraphyletic, with Psocodea as

sister taxon to Holometabola:[6]

Neoptera

Polyneoptera

Eumetabola

Holometabola

Psocodea

Condylognatha

Thysanoptera
(thrips)  

Hemiptera (true bugs)  

Paraneoptera

Internal phylogeny

Here is a cladogram showing the relationships within Psocodea:[3]

Classification

The order Psocodea (formerly 'Psocoptera') is divided into three

suborders
.

Suborder Trogiomorpha

Trogiomorpha have antennae with many segments (22–50 antennomeres) and always three-segmented tarsi.[18]

Trogiomorpha is the smallest suborder of the Psocoptera sensu stricto (i.e., excluding

Phthiraptera), with about 340 species in 7 families, ranging from the fossil family Archaeatropidae with only a handful of species to the speciose Lepidopsocidae
(over 200 species). Trogiomorpha comprises infraorder Atropetae (extant families Lepidopsocidae, Psoquillidae and Trogiidae, and fossil families Archaeatropidae and Empheriidae) and infraorder Psocathropetae (families Psyllipsocidae and Prionoglarididae).

Suborder Troctomorpha

Troctomorpha have antennae with 15–17 segments and two-segmented tarsi.

Troctomorpha comprises the Infraorder Amphientometae (families

Phthiraptera
(lice), and are therefore paraphyletic, as are Psocoptera as a whole.

Some Troctomorpha, such as Liposcelis (which are similar to lice in morphology), are often found in birds' nests, and it is possible that a similar behavior in the ancestors of lice is at the origin of the parasitism seen today.[18]

Suborder Psocomorpha

Psocomorpha are notable for having antennae with 13 segments. They have two- or three-segmented tarsi, this condition being constant (e.g., Psocidae) or variable (e.g., Pseudocaeciliidae) within families. Their wing venation is variable, the most common type being that found in the genus Caecilius (rounded, free areola postica, thickened, free pterostigma, r+s two-branched, m three-branched). Additional veins are found in some families and genera (Dicropsocus and Goja in Epipsocidae, many Calopsocidae, etc.)

Psocomorpha is the largest suborder of the Psocoptera sensu stricto (i.e., excluding

Phthiraptera), with about 3,600 species in 24 families, ranging from the species-poor Bryopsocidae (2 spp.) to the speciose Psocidae (about 900 spp).[18]
Psocomorpha comprises Infraorder Epipsocetae (families Cladiopsocidae, Dolabellopsocidae, Epipsocidae, Neurostigmatidae and Ptiloneuridae), Infraorder Caeciliusetae (families Amphipsocidae, Asiopsocidae, Caeciliusidae, Dasydemellidae and Stenopsocidae), Infraorder Homilopsocidea (families Archipsocidae, Bryopsocidae, Calopsocidae, Ectopsocidae, Elipsocidae, Lachesillidae, Mesopsocidae, Peripsocidae, Philotarsidae, Pseudocaeciliidae and Trichopsocidae) and Infraorder Psocetae (families Hemipsocidae, Myopsocidae, Psilopsocidae and Psocidae).

References

  1. ^ a b c Johnson, Kevin P.; Smith, Vincent S. (2021). "Psocodea species file online, Version 5.0". Retrieved 2021-11-01.
  2. ^ .
  3. ^ a b De Moya, Robert S.; Yoshizawa, Kazunori; Walden, Kimberly K. O.; Sweet, Andrew D.; et al. (2021). "Phylogenomics of Parasitic and Nonparasitic Lice (Insecta: Psocodea): Combining Sequence Data and Exploring Compositional Bias Solutions in Next Generation Data Sets". Systematic Biology. 70 (4): 719–738.
    PMID 32979270
    .
  4. ^ "Psocodea". GBIF. Retrieved 2021-11-01.
  5. S2CID 86331606
    .
  6. ^ .
  7. .
  8. .
  9. .
  10. ^ a b Gullan & Granston (2005). The Insects: An Outline of Entomology 3rd Edition. pp. 499–505.
  11. ^
    ISBN 978-0-19-510033-4.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  12. ^ "Psocoptera - Barklice, Booklice, Psocids -- Discover Life". www.discoverlife.org.
  13. ^ "Stored Product Pests: Booklice (Psocids) FAC". US Army Public Health Command fact sheet.
  14. .
  15. .
  16. .
  17. .
  18. ^ a b c C. Lienhard & C. N. Smithers (2002). "Psocoptera (Insecta): World Catalogue and Bibliography". Instrumenta Biodiversitatis. 5.

External links