Pulse

Source: Wikipedia, the free encyclopedia.
Pulse
Diagram of the rise and lower of blood from a pulse.
Organisms
Amphioxus
.

In

ankle joint (posterior tibial artery), and on foot (dorsalis pedis artery). Pulse (or the count of arterial pulse per minute) is equivalent to measuring the heart rate. The heart rate can also be measured by listening to the heart beat by auscultation, traditionally using a stethoscope and counting it for a minute. The radial pulse is commonly measured using three fingers. This has a reason: the finger closest to the heart is used to occlude the pulse pressure, the middle finger is used get a crude estimate of the blood pressure, and the finger most distal to the heart (usually the ring finger) is used to nullify the effect of the ulnar pulse as the two arteries are connected via the palmar arches (superficial and deep
). The study of the pulse is known as sphygmology.

Physiology

Pulse evaluation at the radial artery.
Recommended points to evaluate pulse

Claudius

Diastolic
blood pressure is non-palpable and unobservable by tactile methods, occurring between heartbeats.

systole move the arterial walls. Forward movement of blood
occurs when the boundaries are pliable and compliant. These properties form enough to create a palpable pressure wave.

The

pulse rate depending upon physiologic demand. In this case, the heart rate is determined by auscultation or audible sounds at the heart apex, in which case it is not the pulse. The pulse deficit (difference between heart beats and pulsations at the periphery) is determined by simultaneous palpation at the radial artery and auscultation at the PMI, near the heart apex. It may be present in case of premature beats or atrial fibrillation
.

Pulse velocity, pulse deficits and much more physiologic data are readily and simplistically visualized by the use of one or more

intensive care
since the 1970s.

The rate of the pulse is observed and measured by tactile or visual means on the outside of an artery and is recorded as beats per minute or BPM.

The pulse may be further indirectly observed under light absorbances of varying wavelengths with assigned and inexpensively reproduced mathematical ratios. Applied capture of variances of light signal from the blood component hemoglobin under oxygenated vs. deoxygenated conditions allows the technology of pulse oximetry.

Characteristics

Rate

Normal pulse rates at rest, in beats per minute (BPM):[2]

newborn
(0–3 months old)
infants
(3–6 months)
infants
(6–12 months)
children
(1–10 years)
children over 10 years
& adults, including seniors
well-trained
adult athletes
99–149 89–119 79–119 69–129 59–99 39–59

The pulse rate can be used to check overall heart health and fitness level. Generally lower is better, but bradycardias can be dangerous. Symptoms of a dangerously slow heartbeat include weakness, loss of energy and fainting.[3]

Rhythm

A normal pulse is regular in rhythm and force. An irregular pulse may be due to

paroxysmal atrial tachycardia, atrial flutter, partial heart block etc. Intermittent dropping out of beats at pulse is called "intermittent pulse". Examples of regular intermittent (regularly irregular) pulse include pulsus bigeminus, second-degree atrioventricular block. An example of irregular intermittent (irregularly irregular) pulse is atrial fibrillation
.

Volume

The degree of expansion displayed by artery during diastolic and systolic state is called volume. It is also known as amplitude, expansion or size of pulse.

Hypokinetic pulse

A weak pulse signifies narrow

aortic arch syndrome
) etc.

Hyperkinetic pulse

A bounding pulse signifies high pulse pressure. It may be due to low

coarctation of aorta
).

The strength of the pulse can also be reported:[4][5]

  • 0 = Absent
  • 1 = Barely palpable
  • 2 = Easily palpable
  • 3 = Full
  • 4 = Aneurysmal or
    bounding pulse

Force

Also known as compressibility of pulse. It is a rough measure of

systolic blood pressure
.

Tension

It corresponds to

diastolic blood pressure
. A low tension pulse (pulsus mollis), the vessel is soft or impalpable between beats. In high tension pulse (pulsus durus), vessels feel rigid even between pulse beats.

Form

A form or contour of a pulse is palpatory estimation of

arteriogram
. A quickly rising and quickly falling pulse (pulsus celer) is seen in aortic regurgitation. A slow rising and slowly falling pulse (pulsus tardus) is seen in aortic stenosis.

Equality

Comparing pulses and different places gives valuable clinical information.

A discrepant or unequal pulse between left and right radial artery is observed in anomalous or aberrant course of artery, coarctation of aorta,

arteriosclerotic
obstruction.

Condition of arterial wall

A normal artery is not palpable after flattening by digital pressure. A thick radial artery which is palpable 7.5–10 cm up the forearm is suggestive of arteriosclerosis.

Radio-femoral delay

In coarctation of aorta, femoral pulse may be significantly delayed as compared to radial pulse (unless there is coexisting aortic regurgitation). The delay can also be observed in

supravalvar aortic stenosis
.

Patterns

Several pulse patterns can be of clinical significance. These include:

  • Anacrotic pulse: notch on the upstroke of the carotid pulse. Two distinct waves (slow initial upstroke and delayed peak, which is close to S2). Present in AS.
  • Dicrotic pulse: is characterized by two beats per cardiac cycle, one systolic and the other diastolic. Physiologically, the dicrotic wave is the result of reflected waves from the lower extremities and aorta. Conditions associated with low cardiac output and high systemic vascular resistance can produce a dicrotic pulse.[6][7]
  • Pulse deficit: difference in the heart rate by direct cardiac ausculation and by palpation of the peripheral arterial pulse rate when in atrial fibrillation (AF).
  • Pulsus alternans: an ominous medical sign that indicates progressive systolic heart failure. To trained fingertips, the examiner notes a pattern of a strong pulse followed by a weak pulse over and over again. This pulse signals a flagging effort of the heart to sustain itself in systole. It also can be detected in HCM with obstruction.
  • Pulsus bigeminus: indicates a pair of hoofbeats within each heartbeat. Concurrent auscultation of the heart may reveal a gallop rhythm of the native heartbeat.
  • Pulsus bisferiens: is characterized by two beats per cardiac cycle, both systolic, unlike the dicrotic pulse. It is an unusual physical finding typically seen in patients with aortic valve diseases if the aortic valve does not normally open and close. Trained fingertips will observe two pulses to each heartbeat instead of one.
  • Pulsus tardus et parvus, also pulsus parvus et tardus, slow-rising pulse and anacrotic pulse, is weak (parvus), and late (tardus) relative to its expected characteristics. It is caused by a stiffened aortic valve that makes it progressively harder to open, thus requiring increased generation of blood pressure in the left ventricle. It is seen in
    aortic valve stenosis.[7][8][9][10]
  • Pulsus paradoxus: a condition in which some heartbeats cannot be detected at the radial artery during the inspiration phase of respiration. It is caused by an exaggerated decrease in blood pressure during this phase, and is diagnostic of a variety of cardiac and respiratory conditions of varying urgency, such as cardiac tamponade.
  • electrocardiogram
    (ECG) is required to identify the type of tachycardia.
  • systole and diastole. Scientifically, systole and diastole are forces
    that expand and contract the pulmonary and systemic circulations.
  • A collapsing pulse is a sign of hyperdynamic circulation, which can be seen in AR or PDA.

Common palpable sites

Sites can be divided into peripheral pulses and central pulses. Central pulses include the carotid, femoral, and brachial pulses.[11]

Upper limb

Front of right upper extremity
  • Axillary pulse: located inferiorly of the lateral wall of the axilla
  • Brachial pulse: located on the inside of the upper arm near the elbow, frequently used in place of carotid pulse in infants (brachial artery)
  • Radial pulse: located on the lateral of the wrist (
    anatomical snuff box
    .
  • Ulnar pulse: located on the medial of the wrist (ulnar artery).

Lower limb

Head and neck

Arteries of the neck.

Although the pulse can be felt in multiple places in the head, people should not normally hear their heartbeats within the head. This is called

pulsatile tinnitus
, and it can indicate several medical disorders.

Torso

  • Apical pulse: located in the 5th left intercostal space, 1.25 cm lateral to the
    mid-clavicular line. In contrast with other pulse sites, the apical pulse site is unilateral, and measured not under an artery, but below the heart itself (more specifically, the apex of the heart). See also apex beat
    .

History

Pulse rate was first measured by ancient Greek physicians and scientists. The first person to measure the heart beat was Herophilus of Alexandria, Egypt (c. 335–280 BC) who designed a water clock to time the pulse.[12] Rumi has mentioned in a poem that "The wise physician measured the patient's pulse and became aware of his condition." It shows the practice was common during Rumi's era and geography.[13] The first person to accurately measure the pulse rate was

Santorio Santorii who invented the pulsilogium, a form of pendulum which was later studied by Galileo Galilei.[14] A century later another physician, de Lacroix
, used the pulsilogium to test cardiac function.

See also

References

  1. ^ Temkin 165;BBC[a]
  2. ^ US Department of Health and Human Services – National Ites of Health Archived 2016-07-05 at the Wayback Machine Pulse
  3. ^ "Pulse Rate Measurement". Healthwise. WebMD. Archived from the original on 23 July 2012. Retrieved 14 March 2011.
  4. ^ "www.meddean.luc.edu". Archived from the original on 2008-09-07. Retrieved 2009-05-20.
  5. ^ "Vascular Surgery, University of Kansas School of Medicine". Archived from the original on 2009-02-04. Retrieved 2009-05-20.
  6. from the original on 2023-07-03. Retrieved 2018-01-02.
  7. ^ from the original on 2023-07-03. Retrieved 2018-01-02.
  8. from the original on 2020-05-10. Retrieved 2018-01-02.
  9. .
  10. from the original on 2023-07-03. Retrieved 2018-01-02.
  11. from the original on 2023-07-03. Retrieved 2020-10-03.
  12. .
  13. ^ "Rumi poem on the afflicted patient". Archived from the original on 2022-12-16. Retrieved 2022-12-16.
  14. PMID 30854144
    .

External links

This page is based on the copyrighted Wikipedia article: Pulse. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy