PulseAudio

Source: Wikipedia, the free encyclopedia.
PulseAudio
Developer(s)
  • Lennart Poettering
  • Pierre Ossman
  • Shahms E. King
  • Tanu Kaskinen
  • Colin Guthrie
  • Arun Raghavan
  • David Henningsson
Initial release17 July 2004; 19 years ago (2004-07-17)[1]
Stable release
17.0[2] / 12 January 2024; 2 months ago (2024-01-12)
ARM, PowerPC, x86 / IA-32, x86-64, and MIPS
TypeSound server
LicenseLGPL-2.1-or-later[4]
Websitepulseaudio.org

PulseAudio is a network-capable

PCM audio streams.[5]

PulseAudio is free and open-source software, and is licensed under the terms of the LGPL-2.1-or-later.[4]

It was created in 2004 under the name Polypaudio but was renamed in 2006 to PulseAudio.[6]

PulseAudio competes with newer PipeWire, which provides a compatible PulseAudio server (known as pipewire-pulse), and PipeWire is now used by default on many Linux distributions, including Fedora Linux, Ubuntu, and Debian.[7][8][9]

Support for Microsoft Windows

On Microsoft Windows, PulseAudio runs in Windows Subsystem for Linux.

The NT kernel was previously supported via MinGW (an implementation of the GNU toolchain, which includes various tools such as GCC and binutils). The NT kernel port has not been updated since 2011, however.[10]

Software architecture

PulseAudio operational flow chart
PulseAudio is a daemon that does mixing in software.

In broad terms ALSA is a kernel subsystem that provides the sound hardware driver, and PulseAudio is the interface engine between applications and ALSA. However, its use is not mandatory and audio can still be played and mixed together without PulseAudio.

PulseAudio acts as a sound server, where a background process accepting sound input from one or more sources (processes, capture devices, etc.) is created. The background process then redirects these sound sources to one or more sinks (sound cards, remote network PulseAudio servers, or other processes).[11]

One of the goals of PulseAudio is to reroute all sound streams through it, including those from processes that attempt to directly access the hardware (like legacy OSS applications). PulseAudio achieves this by providing adapters to applications using other audio systems, like aRts and ESD.

In a typical installation scenario under Linux, the user configures ALSA to use a virtual device provided by PulseAudio. Thus, applications using ALSA will output sound to PulseAudio, which then uses ALSA itself to access the real sound card. PulseAudio also provides its own native interface to applications that want to support PulseAudio directly, as well as a legacy interface for ESD applications, making it suitable as a drop-in replacement for ESD.

For OSS applications, PulseAudio provides the padsp utility, which replaces device files such as /dev/dsp, tricking the applications into believing that they have exclusive control over the sound card. In reality, their output is rerouted through PulseAudio.

libcanberra

libcanberra is an abstract API for desktop event sounds and a total replacement for the "PulseAudio sample cache API":

libSydney

libSydney is a total replacement for the "PulseAudio streaming API", and plans have been made for libSydney to eventually become the only audio API used in PulseAudio.[15]

Features

The main PulseAudio features include:[11]

  • Per-application volume controls[16]
  • An extensible plugin architecture with support for loadable modules
  • Compatibility with many popular audio applications[17]
  • Support for multiple audio sources and sinks
  • A zero-copy memory architecture for processor resource efficiency
  • Ability to discover other computers using PulseAudio on the local network and play sound through their speakers directly
  • Ability to change which output device applications use to play sound through while they are playing sound (Applications do not need to support this, PulseAudio is capable of doing this without applications detecting that it has happened)
  • A command-line interface with scripting capabilities
  • A sound daemon with command line reconfiguration capabilities
  • Built-in sample conversion and resampling capabilities
  • The ability to combine multiple sound cards into one
  • The ability to synchronize multiple playback streams
  • Bluetooth audio device support with dynamic detection capabilities
  • The ability to enable system wide equalization

Adoption

PulseAudio first appeared for regular users in

MATE
desktop environment.

Various Linux-based mobile devices, including Nokia N900, Nokia N9 and the Palm Pre[20] use PulseAudio.

Tizen, an open-source mobile operating system, which is a project of the Linux Foundation and is governed by a Technical Steering Group (TSG) composed of Intel and Samsung, uses PulseAudio.

Problems during adoption phase

  • The PortAudio API was incompatible with PulseAudio's design and needed to be modified.[21] Almost all packages using OSS and many of the packages using ALSA needed to be modified to support PulseAudio.[22] Further development of the glitch-free audio feature required a complete rewrite of the PulseAudio core, and also changes to the ALSA API and internals were needed.[23][24]
  • When first adopted by distributions, PulseAudio developer
    Ubuntu didn't exactly do a stellar job. They didn't do their homework" in adopting PulseAudio[26] for Ubuntu "Hardy Heron" (8.04), a problem that was improved with subsequent Ubuntu releases.[27] However, in October 2009, Poettering reported that he was still not happy with Ubuntu's integration of PulseAudio.[28]
  • Interaction with old sound components by particular software: Certain programs, such as Adobe Flash for Linux, caused instability in PulseAudio.[29][30] Newer implementations of Flash plugins do not require the conflicting elements, and as a result Flash and PulseAudio are now compatible.
  • Early management of buffer over/underruns: Earlier versions of PulseAudio sometimes started to distort the processed audio due to incorrect handling of buffer over/underruns.[31]
  • For headphone users, the potential for noise-induced hearing loss due to extremely loud volumes in the event of a misbehaving application.[32][33][34][35]

Related software

Other sound servers

JACK is a sound server that provides real-time, low-latency (i.e. 5 milliseconds or less) audio performance and, since JACK2, supports efficient load balancing by utilizing symmetric multiprocessing; that is, the load of all audio clients can be distributed among several processors. JACK is the preferred sound server for professional audio applications such as Ardour, ReZound, and LinuxSampler; multiple free audio-production distributions use it as the default audio server.

It is possible for JACK and PulseAudio to coexist: while JACK is running, PulseAudio can automatically connect itself as a JACK client, allowing PulseAudio clients to make and record sound at the same time as JACK clients.[36]

PipeWire is an audio and video server that "aims to support the use cases currently handled by both PulseAudio and Jack".[37][38]

General audio infrastructures

Before JACK and PulseAudio, sound on these systems was managed by multi-purpose integrated audio solutions. These solutions do not fully cover the mixing and sound streaming process, but they are still used by JACK and PulseAudio to send the final audio stream to the sound card.

  • ALSA provides a software mixer called dmix, which was developed prior to PulseAudio. This is available on almost all Linux distributions and is a simpler PCM audio mixing solution. It does not provide the advanced features (such as timer-based scheduling and network audio) of PulseAudio. On the other hand, ALSA offers, when combined with corresponding sound cards and software, low latencies.
  • 4Front Technologies, who in July 2007 released sources for OSS under CDDL-1.0 for OpenSolaris and under GPL-2.0-only for Linux.[40] The modern implementation, Open Sound System v4, provides software mixing, resampling, and changing of the volume on a per-application basis; in contrast to PulseAudio, these features are implemented within the kernel. PulseAudio support in OpenIndiana and other illumos
    distributions relies on the in-kernel OSS implementation ("Boomer").

See also

References

  1. ^ "OldNews". freedesktop.org.
  2. ^ "PulseAudio 17.0 · PulseAudio / pulseaudio · GitLab". GitLab. Retrieved 13 January 2024.
  3. ^ "PulseAudio", Analysis Summary, Open Hub
  4. ^ a b "License", PulseAudio git, Free desktop, archived from the original on 4 March 2014, retrieved 16 June 2011
  5. ^ "SupportedAudioFormats". www.freedesktop.org. Retrieved 13 May 2023.
  6. ^ The Project Formerly Known as Polypaudio
  7. ^ "Changes/DefaultPipeWire - Fedora Project Wiki". fedoraproject.org. Retrieved 13 February 2023.
  8. ^ Sneddon, Joey (22 May 2022). "Ubuntu 22.10 Makes PipeWire Default for Audio". OMG! Ubuntu!. Retrieved 13 February 2023.
  9. ^ "Debian 12 Switches To PipeWire & WirePlumber By Default With The GNOME Desktop". www.phoronix.com. Retrieved 13 February 2023.
  10. ^ PulseAudio on Windows
  11. ^ a b "About", PulseAudio, Free desktop, retrieved 11 March 2013
  12. ^ "Debian -- Package Search Results -- libcanberra". packages.debian.org.
  13. ^ "Debian -- Package Search Results -- libasound". packages.debian.org.
  14. ^ "Debian -- Package Search Results -- libcanberra-pulse". packages.debian.org.
  15. ^ Poettering, Lennart (8 February 2007). "FOMS/LCA Recap". 0pointer.de. Retrieved 13 March 2017.
  16. ^ Poettering, Lennart, "Interviews", Fedora Project, Red Hat, retrieved 3 July 2009
  17. ^ Pulse Audio wiki, PulseAudio, archived from the original on 31 August 2009, retrieved 19 July 2009
  18. ^ "LPC: Linux audio: it's a mess [LWN.net]". 18 September 2008. Retrieved 11 July 2019.
  19. ^ PulseAudio, Debian, archived from the original (wiki) on 9 November 2013, retrieved 9 November 2013
  20. ^ "Open source identity: PulseAudio creator Lennart Poettering", TechWorld, 8 October 2009
  21. ^ Poettering, Lennart (25 September 2004). "Writing a PortAudio driver". audio.portaudio.devel. git.net. Retrieved 28 February 2017.
  22. ^ Poettering, Lennart. "PulseAudio is now enabled by default on new Fedora installs". Fedora Development ML. Red Hat. Retrieved 1 March 2017.
  23. ^ "Features: Glitch-free Audio". Fedora Project Wiki. Retrieved 28 February 2017.
  24. ^ Poettering, Lennart. "Alsa Issues". PulseAudio - Trac. Archived from the original on 16 October 2008. Retrieved 28 February 2017.
  25. ^ LPC: Linux audio: it's a mess, LWN, 18 September 2008, archived from the original on 1 September 2009, retrieved 3 July 2009
  26. ^ Lennart Poettering (18 July 2008), PulseAudio FUD, 0pointer.de, archived from the original on 2 September 2009, retrieved 30 December 2009
  27. ^ How-to: PulseAudio Fixes & System-Wide Equalizer Support, Ubuntu Forums, 10 May 2008, archived from the original on 1 March 2010, retrieved 18 October 2009
  28. ^ I'll Break Your Audio, Lennart Poettering Blog, 19 October 2009, retrieved 26 December 2009
  29. ^ No sound after running Flash, YouTube, etc. (pulseaudio solution), Ubuntu Forums, archived from the original on 29 February 2012, retrieved 18 October 2009
  30. ^ PulseAudio, Ubuntu Wiki, archived from the original on 25 February 2011, retrieved 18 October 2009
  31. ^ "Over-optimistic buffering in PulseAudio causes underruns (audible stuttering, pops)". Launchpad. Retrieved 9 November 2013.
  32. ^ "46466 - PulseAudio needs a way for the user to set inviolable maximum volume". Bugzilla. Retrieved 6 October 2021.
  33. ^ "[SOLVED] disabling pulseaudio - Page 3". Linux Questions. Retrieved 6 October 2021.
  34. ^ "Bug #410948 'Volume too loud' : Bugs : pulseaudio package". Ubuntu. Retrieved 6 October 2021.
  35. ^ "#837637 - Audio settings often reset to 100% Volume". Debian Bug report logs. Retrieved 6 October 2021.
  36. ^ See “Loadable Modules.” Modules, Freedesktop.org, https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/User/Modules/#index9h2, retrieved August 28, 2019
  37. ^ "PipeWire". pipewire.org.
  38. ^ "On the Road to Fedora Workstation 31 — Christian F.K. Schaller".
  39. ^ An introduction to Linux sound systems and APIs, Linux.com, 9 August 2004, archived from the original on 19 October 2014, retrieved 23 March 2013, OSS is available not only for Linux but also for BSD OSes and other Unixes. That may be its only advantage, because this system is not very powerful and was officially replaced by ALSA in 2.5 kernels...
  40. ^ 4Front technologies releases the source code for open sound system, Linux PR, 14 June 2007, retrieved 8 January 2012.

External links