Pure-tone audiometry

Source: Wikipedia, the free encyclopedia.
(Redirected from
Pure tone audiometry
)
Pure tone audiometry
Diagram of the human ear
ICD-9-CM95.41
MeSHD001301

Pure-tone audiometry is the main

hearing threshold levels of an individual, enabling determination of the degree, type and configuration of a hearing loss[1][2] and thus providing a basis for diagnosis and management. Pure-tone audiometry is a subjective, behavioural measurement of a hearing threshold, as it relies on patient responses to pure tone stimuli.[3] Therefore, pure-tone audiometry is only used on adults and children old enough to cooperate with the test procedure. As with most clinical tests, standardized calibration of the test environment, the equipment and the stimuli is needed before testing proceeds (in reference to ISO, ANSI, or other standardization body). Pure-tone audiometry only measures audibility thresholds, rather than other aspects of hearing such as sound localization and speech recognition. However, there are benefits to using pure-tone audiometry over other forms of hearing test, such as click auditory brainstem response (ABR).[3] Pure-tone audiometry provides ear specific thresholds, and uses frequency specific pure tones to give place specific responses, so that the configuration of a hearing loss can be identified. As pure-tone audiometry uses both air and bone conduction audiometry, the type of loss can also be identified via the air-bone gap. Although pure-tone audiometry has many clinical benefits, it is not perfect at identifying all losses, such as ‘dead regions’ of the cochlea and neuropathies such as auditory processing disorder (APD).[4][5][6] This raises the question of whether or not audiograms
accurately predict someone's perceived degree of disability.

Pure-tone audiometry procedural standards

The current International Organization for Standardization (ISO) standard for pure-tone audiometry is ISO:8253-1, which was first published in 1983.[7] The current American National Standards Institute (ANSI) standard for pure-tone audiometry is ANSI/ASA S3.21-2004, prepared by the Acoustical Society of America.

In the United Kingdom, The British Society of Audiology (BSA) is responsible for publishing the recommended procedure for pure-tone audiometry, as well as many other audiological procedures. The British recommended procedure is based on international standards. Although there are some differences, the BSA-recommended procedures are in accordance with the ISO:8253-1 standard. The BSA-recommended procedures provide a "best practice" test protocol for professionals to follow, increasing validity and allowing standardisation of results across Britain.[8]

In the United States, the American Speech–Language–Hearing Association (ASHA) published Guidelines for Manual Pure-Tone Threshold Audiometry in 2005.

Variations

There are cases where conventional pure-tone audiometry is not an appropriate or effective method of threshold testing. Procedural changes to the conventional test method may be necessary with populations who are unable to cooperate with the test in order to obtain hearing thresholds. Sound field audiometry may be more suitable when patients are unable to wear earphones, as the stimuli are usually presented by loudspeaker. A disadvantage of this method is that although thresholds can be obtained, results are not ear specific. In addition, response to pure tone stimuli may be limited, because in a sound field pure tones create

play audiometry.[10][11]

Conventional audiometry tests frequencies between 250

ototoxic medication and noise exposure, appear to be more detrimental to high frequency sensitivity than to that of mid or low frequencies. Therefore, high frequency audiometry is an effective method of monitoring losses that are suspected to have been caused by these factors. It is also effective in detecting the auditory sensitivity changes that occur with aging.[12]

Cross hearing and interaural attenuation

Interaural attenuation with bone conduction

When sound is applied to one ear the

contralateral cochlea can also be stimulated to varying degrees, via vibrations through the bone of the skull. When the stimuli presented to the test ear stimulates the cochlea of the non-test ear, this is known as cross hearing. Whenever it is suspected that cross hearing has occurred it is best to use masking. This is done by temporarily elevating the threshold of the non-test ear, by presenting a masking noise at a predetermined level. This prevents the non-test ear from detecting the test signal presented to the test ear. The threshold of the test ear is measured at the same time as presenting the masking noise to the non-test ear. Thus, thresholds obtained when masking has been applied, provide an accurate representation of the true hearing threshold level of the test ear.[13]

A reduction or loss of energy occurs with cross hearing, which is referred to as interaural attenuation (IA) or transcranial transmission loss.[13] IA varies with transducer type. It varies from 40 dB to 80 dB with supra-aural headphones. However, with insert earphones it is in the region of 55 dB. The use of insert earphones reduces the need for masking, due to the greater IA which occurs when they are used (See Figure 1).[14]

Air conduction results in isolation, give little information regarding the type of hearing loss. When the thresholds obtained via air conduction are examined alongside those achieved with bone conduction, the configuration of the hearing loss can be determined. However, with bone conduction (performed by placing a vibrator on the

mastoid
bone behind the ear), both cochleas are stimulated. IA for bone conduction ranges from 0-20 dB (See Figure 2). Therefore, conventional audiometry is ear specific, with regards to both air and bone conduction audiometry, when masking is applied.

Pure-tone audiometry thresholds and hearing disability

Pure-tone audiometry is described as the gold standard for assessment of a hearing loss

degree of hearing loss is classified as mild, moderate, severe or profound.[16]
The results of pure-tone audiometry are however a very good indicator of hearing impairment.

Hearing disability is defined by the WHO as a reduction in the ability to hear sounds in both quiet and noisy environments (compared to people with normal hearing), which is caused by a hearing impairment.[17] Several studies have investigated whether self-reported hearing problems (via questionnaires and interviews) were associated with the results from pure-tone audiometry. The findings of these studies indicate that in general, the results of pure-tone audiometry correspond to self-reported hearing problems (i.e. hearing disability). However, for some individuals this is not the case; the results of pure-tone audiometry only, should not be used to ascertain an individual's hearing disability.[18][19]

Figure 10: Speech recognition threshold (SRT) with noise. To aid explanation of this concept the CHL and the SNHL have the same magnitude of hearing loss (50 dBHL). The horizontal part of the curves is where the noise is inaudible. Thus, there is no masking effect on the SRT. The horizontal portion of the curve for the SNHL and CHL extends further than that for a normal hearing person, as the noise needs to become audible to become a problem. Thus, more noise has to be applied, to produce a masking effect. At the right hand side of the graph, to identify 50% of the speech correctly, the speech needs to much more intense than in the quiet. This is because at this end of the graph, the noise is very loud whether the person has a hearing loss or not. There is a transition between these two areas described. Factor A is a problem only in low noise levels, whereas Factor D is a problem when the noise level is high.

Hearing impairment (based on the

attenuating the speech, whereas Factor D affected speech intelligibility by distorting the speech.[20]

Speech recognition threshold (SRT) is defined as the sound pressure level at which 50% of the speech is identified correctly. For a person with a conductive hearing loss (CHL) in quiet, the SRT needs to be higher than for a person with normal hearing. The increase in SRT depends on the degree of hearing loss only, so Factor A reflects the audiogram of that person. In noise, the person with a CHL has the same problem as the person with normal hearing (See Figure 10).[20]

For a person with a Sensorineural hearing loss (SNHL) in quiet, the SRT also needs to be higher than for a person with normal hearing. This is because the only factor that is important in quiet for a CHL and a SNHL is the audibility of the sound, which corresponds to Factor A. In noise, the person with a SNHL requires a better signal-to-noise ratio to achieve the same performance level, as the person with normal hearing and the person with a CHL. This shows that in noise, Factor A is not enough to explain the problems of a person with a SNHL. Therefore, there is another problem present, which is Factor D. At present, it is not known what causes Factor D. Thus, in noise the audiogram is irrelevant. It is the type of hearing loss that is important in this situation.[20]

These findings have important implications for the design of

hearing aids. As hearing aids at present can compensate for Factor A, but this is not the case for Factor D. This could be why hearing aids are not satisfactory for a lot of people.[20]

Audiograms and hearing loss

The shape of the audiogram resulting from pure-tone audiometry gives an indication of the type of hearing loss as well as possible causes. Conductive hearing loss due to disorders of the middle ear shows as a flat increase in thresholds across the frequency range. Sensorineural hearing loss will have a contoured shape depending on the cause. Presbycusis or age-related hearing loss for example is characterized by a high frequency roll-off (increase in thresholds). Noise-induced hearing loss has a characteristic notch at 4000 Hz. Other contours may indicate other causes for the hearing loss.

See also

References

  1. ^ Audiology Pure-Tone Testing at eMedicine
  2. OCLC 704384422
    .
  3. ^
    OCLC 47659401.{{cite book}}: CS1 maint: others (link
    )
  4. .
  5. .
  6. .
  7. ^ "ISO 6189:1983". Retrieved 18 November 2019.
  8. ^ Recommended Procedure: Pure-tone air-conduction and bone-conduction threshold audiometry with and without masking (PDF). Bathgate, UK: British Society of Audiology. 2011. Retrieved 18 November 2019.
  9. ^ http://www.emedicine.com/ent/topic311.htm [Accessed on 27/02/07]
  10. ^ http://michiganotoplasty.com/understanding-deafness-pta-testing/ Archived 2015-07-22 at the Wayback Machine [Accessed on 07/18/15].
  11. ^ "Hearing Testing and Screening in Young Children". patient.info. Retrieved 16 November 2014.
  12. PMID 17221060
    .
  13. ^ a b Katz J. Clinical Handbook of Audiology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002.
  14. PMID 16424946
    .
  15. ^ Sindhusake D, Mitchell P, Smith W, Golding M, Newall P, Hartley D, et al. Validation of self-reported hearing loss. The Blue Mountains Hearing Study. Int. J. Epidemiol. 2001;30:1371-78.
  16. ^ "Deafness and hearing loss Fact sheet N°300". WHO (World Health Organization). Retrieved 16 November 2014.
  17. ^ "Sound Advice". Sound Advice Safety and Health Ltd. Retrieved 10 May 2016.
  18. ^ Hietamen A, Era P, Henrichsen J, Rosenhall U, Sorri M, Heikkinen E. Hearing among 75-year old people in three Nordic localities: A comparative study. Int. J. Audiol. 2004;44:500-08.
  19. ^ Uchida Y, Nakashima T, Ando F, Niino N, Shimokata H. Prevalence of Self-perceived Auditory Problems and their Relation to Audiometric Thresholds in a Middle-aged to Elderly Population. Acta. Otolaryngol. 2003;123:618-26.
  20. ^
    PMID 670550
    .

External links