Quantum machine

Source: Wikipedia, the free encyclopedia.
coupling capacitor (small white square). The qubit
is connected to upper right of the coupling capacitor.

A quantum machine is a human-made device whose collective motion follows the laws of

macroscopic objects may follow the laws of quantum mechanics dates back to the advent of quantum mechanics in the early 20th century.[1][2] However, as highlighted by the Schrödinger's cat thought experiment, quantum effects are not readily observable in large-scale objects.[citation needed] Consequently, quantum states of motion have only been observed in special circumstances at extremely low temperatures. The fragility of quantum effects in macroscopic objects may arise from rapid quantum decoherence.[3] Researchers created the first quantum machine in 2009, and the achievement was named the "Breakthrough of the Year" by Science
in 2010.

History

film bulk acoustic resonator
. The mechanically active part of the resonator is supported to the left by two metal leads which act as electrical connections.

The first quantum machine was created on August 4, 2009, by Aaron D. O'Connell while pursuing his Ph.D. under the direction of Andrew N. Cleland and John M. Martinis at the University of California, Santa Barbara. O'Connell and his colleagues coupled together a mechanical resonator, similar to a tiny springboard, and a qubit, a device that can be in a superposition of two quantum states at the same time. They were able to make the resonator vibrate a small amount and a large amount simultaneously—an effect which would be impossible in classical physics. The mechanical resonator was just large enough to see with the naked eye—about as long as the width of a human hair.[4] The groundbreaking work was subsequently published in the journal Nature in March 2010.[5] The journal Science declared the creation of the first quantum machine to be the "Breakthrough of the Year" of 2010.[6]

Cooling to the ground state

In order to demonstrate the quantum mechanical behavior, the team first needed to cool the mechanical resonator until it was in its quantum ground state, the state with the lowest possible energy.

A temperature was required, where is the

Planck Constant
, is the frequency of the resonator and is the Boltzmann constant.[a]

Previous teams of researchers had struggled with this stage, as a 1 

film bulk acoustic resonator,[5] with a much higher resonant frequency (6 GHz) which would hence reach its ground state at a (relatively) higher temperature (~0.1 K); this temperature could then be easily reached with a dilution refrigerator.[5] In the experiment, the resonator was cooled to 25 mK.[5]

Controlling the quantum state

The film bulk acoustic resonator was made of

piezoelectric material, so that as it oscillated its changing shape created a changing electric signal, and conversely an electric signal could affect its oscillations. This property enabled the resonator to be coupled with a superconducting phase qubit, a device used in quantum computing
whose quantum state can be accurately controlled.

In quantum mechanics, vibrations are made up of elementary vibrations called

nanoseconds before being broken down by disruptive outside influences.[10] In the Nature paper, the team concluded "This demonstration provides strong evidence that quantum mechanics applies to a mechanical object large enough to be seen with the naked eye."[5]

Notes

^ a: The ground state energy of an oscillator is proportional to its frequency: see quantum harmonic oscillator.

References

  1. S2CID 206795705
    .
  2. ..
  3. .
  4. ^ Boyle, Alan. "The year in science: a quantum leap". MSNBC. Archived from the original on 2010-12-19. Retrieved 2010-12-23.
  5. ^
    S2CID 4412475
    .
  6. .
  7. ^ Steven Girvin, http://www.condmatjournalclub.org/wp-content/uploads/2010/04/jccm_april2010_013.pdf Archived 2016-05-12 at the Wayback Machine
  8. ^ Markus Aspelmeyer, "Quantum mechanics: the surf is up", Nature 464, 685–686 (1 April 2010)
  9. ^ Brandon Bryn, "Science: The breakthroughs of 2010 and insights of the decade", American Association for the Advancement of Science, December 16, 2010
  10. ^ Richard Webb, "First quantum effects seen in visible object", New Scientist, March 17, 2010

External links