RadBall

Source: Wikipedia, the free encyclopedia.

The RadBall is a 140-millimetre (5.5-inch) diameter deployable, passive, non-electrical gamma hot-spot imaging device that offers a 360 degree view of the deployment area. The device is particularly useful in instances where the

rads (20 mGy to 50 Gy
) which makes the technology widely applicable to nuclear decommissioning applications.

The device

The device consists of two constituent parts, a

3D visualisation
of the radioactive environment predicting both source location and intensity.

Deployment and retrieval

The overall

collimation
device, ensuring that it has not rotated or moved during the deployment period.

Analysis and visualisation

Step 5 involves scanning the

line of sight between the device and the point on the wall. If two devices are deployed in different locations within the same deployment area, triangulation
can be used to predict where along the extrapolated line the radiation source is.

Benefits over existing technology

A number of alternative technologies and approaches do exist ranging from the use of

GM
based detectors mounted on a manipulator and moved around a radioactive cell to heavily shielded and collimated gamma-based camera. The technology tested here does have a number of advantages over the aforementioned. With regards to the GM / manipulator approach, the technology has directional awareness, an ability to distinguish separate sources which are in close proximity, there is no need for a power or data umbilical and the technology can be used in areas where a manipulator is not present. With regards to the heavily collimated gamma camera technology, the technology also has a number of advantages including a much more compact size, less weight, no power and data umbilical as well as offering a lower financial risk should the equipment become contaminated.

Deployment history

The technology has been successfully deployed a number of times throughout the US and the UK as described below.

Savannah River Site, USA

The earliest lab based tests undertaken on the original version of the technology was performed at the

Hot Cell in order to characterise the radiation sources within. This work is described in a number of previous publications, primarily in a report commissioned by the US Department of Energy,[1] but also in a number of journal publications.[2][3][4] and general industrial news outlets.[5]

Hanford Site, USA

Further testing of the original device was undertaken in order to demonstrate that the technology could locate submerged radiological hazards. This study involved, for the first time, underwater deployments at the US Department of Energy Hanford Site. This study represents the first successful underwater deployment of technology and a further step in demonstrating that the technology has the ability to be remotely deployed with no electrical supplies into difficult to access areas and locate radiation hazards. This study was part of ongoing work to investigate whether the technology is able to characterize more complex radiation environments as described previously.[6]

Oak Ridge National Laboratory, USA

A number of trials took place at the

US Department of Energy Oak Ridge National Laboratory (ORNL) during December 2010 as described previously.[7]
The overall objective for these trials was to demonstrate that a newly developed technology could be used to locate, quantify and characterise the radiological hazards within two separate Hot Cells (B and C). For Hot Cell B, the primary objective of demonstrating that the technology could be used to locate, quantify and characterise 3 radiological sources has been met with 100% success. Despite more challenging conditions in Hot Cell C, two sources were detected and accurately located. To summarise, the technology performed extremely well with regards to detecting and locating radiation sources and, despite the challenging conditions, moderately well when assessing the relative energy and intensity of those sources.

Sellafield Site, UK

More recently during Winter 2011 the technology was successfully deployed on the UK's Sellafield Site in order to map the whereabouts of numerous radioactive containers within a Shielded Cell Facility. This particular project involved the deployment of three devices and represents the first instance in which triangulation was demonstrated. Overall the technology performed well by locating and quantifying around a dozen sources. This work package was undertaken in partnership with Sellafield Ltd.

References

  1. ^ Farfán, Eduardo B., Trevor Q. Foley, Timothy G. Jannik, John R. Gordon, Larry J. Harpring, Steven J. Stanley, Christopher J. Holmes, Mark Oldham and John Adamovics. 2009. "Testing of the RadBall Technology at Savannah River National Laboratory Savannah River National Laboratory report." [1]
  2. PMID 21617738
    .
  3. .
  4. .
  5. ^ SRNL and NNL Collaborate on RadBall Trials
  6. S2CID 24755090
    .
  7. .

External links