Radio galaxy

Source: Wikipedia, the free encyclopedia.
Alcyoneus, a giant radio galaxy with lobed structures spanning 5 megaparsecs (16×106 ly).

A radio galaxy is a

intergalactic medium, particularly in galaxy groups and clusters
.

Alcyoneus is a low-excitation radio galaxy, identified as having the largest radio lobes found, with lobed structures spanning 5 megaparsecs (16×106 ly). For comparison, another similarly sized giant radio galaxy is 3C 236, with lobes 15 million light-years across. A giant radio galaxy is a special class of objects characterized by the presence of radio lobes generated by relativistic jets powered by the central galaxy's supermassive black hole. Giant radio galaxies are different from ordinary radio galaxies in that they can extend to much larger scales, reaching upwards to several megaparsecs across, far larger than the diameters of their host galaxies.

Emission processes

The

radio emission from radio-loud active galaxies is synchrotron emission, as inferred from its very smooth, broad-band nature and strong polarization. This implies that the radio-emitting plasma contains, at least, electrons with relativistic speeds (Lorentz factors of ~104) and magnetic fields. Since the plasma must be neutral, it must also contain either protons or positrons. There is no way of determining the particle content directly from observations of synchrotron radiation. Moreover, there is no way to determine the energy densities in particles and magnetic fields from observation: the same synchrotron emissivity may be a result of a few electrons and a strong field, or a weak field and many electrons, or something in between. It is possible to determine a minimum energy condition which is the minimum energy density that a region with a given emissivity can have, but for many years there was no particular reason to believe that the true energies were anywhere near the minimum energies.[3]

A sister process to the synchrotron radiation is the inverse-Compton process, in which the relativistic electrons interact with ambient photons and Thomson scatter them to high energies. Inverse-Compton emission from radio-loud sources turns out to be particularly important in X-rays,[4] and, because it depends only on the density of electrons, a detection of inverse-Compton scattering allows a somewhat model-dependent estimate of the energy densities in the particles and magnetic fields. This has been used to argue that many powerful sources are actually quite near the minimum-energy condition.

Synchrotron radiation is not confined to radio wavelengths: if the radio source can accelerate particles to high enough energies, features that are detected in the radio wavelengths may also be seen in the

Jets
and hotspots are the usual sources of high-frequency synchrotron emission. It is hard to distinguish observationally between the synchrotron and inverse-Compton radiation, making them a subject of ongoing research.

Processes, collectively known as particle acceleration, produce populations of relativistic and non-thermal particles that give rise to synchrotron and inverse-Compton radiation. Fermi acceleration is one plausible particle acceleration process in radio-loud active galaxies.

Radio structures

Pseudo-colour
image of the large-scale radio structure of the FRII radio galaxy 3C98. Lobes, jet and hotspot are labelled.

Radio galaxies, and to a lesser extent, radio-loud quasars display a wide range of structures in radio maps. The most common large-scale structures are called lobes: these are double, often fairly symmetrical, roughly ellipsoidal structures placed on either side of the active nucleus. A significant minority of low-luminosity sources exhibit structures usually known as plumes which are much more elongated. Some radio galaxies show one or two long narrow features known as jets (the most famous example being the giant galaxy

Virgo cluster) coming directly from the nucleus and going to the lobes. Since the 1970s,[5][6]
the most widely accepted model has been that the lobes or plumes are powered by beams of high-energy particles and magnetic field coming from close to the active nucleus. The jets are believed to be the visible manifestations of the beams, and often the term jet is used to refer both to the observable feature and to the underlying flow.

Pseudo-colour image of the large-scale radio structure of the FRI radio galaxy 3C31
. Jets and plumes are labelled.

In 1974, radio sources were divided by

Fanaroff and Riley Class I (FRI) and Class II (FRII).[7] The distinction was originally made based on the morphology of the large-scale radio emission (the type was determined by the distance between the brightest points in the radio emission): FRI sources were brightest towards the centre, while FRII sources were brightest at the edges. Fanaroff and Riley observed that there was a reasonably sharp divide in luminosity between the two classes: FRIs were low-luminosity, FRIIs were high luminosity.[7]
With more detailed radio observations, the morphology turns out to reflect the method of energy transport in the radio source. FRI objects typically have bright jets in the centre, while FRIIs have faint jets but bright hotspots at the ends of the lobes. FRIIs appear to be able to transport energy efficiently to the ends of the lobes, while FRI beams are inefficient in the sense that they radiate a significant amount of their energy away as they travel.

In more detail, the FRI/FRII division depends on host-galaxy environment in the sense that the FRI/FRII transition appears at higher luminosities in more massive galaxies.

supersonic jet abruptly terminates at the end of the source, and their spectral energy distributions are consistent with this picture.[10]
Often multiple hotspots are seen, reflecting either continued outflow after the shock or movement of the jet termination point: the overall hotspot region is sometimes called the hotspot complex.

Names are given to several particular types of radio source based on their radio structure:

Life cycles and dynamics

The largest radio galaxies have lobes or plumes extending to

3C236), implying a timescale for growth of the order of tens to hundreds of millions of years. This means that, except in the case of very small, very young sources, we cannot observe radio source dynamics directly, and so must resort to theory and inferences from large numbers of objects. Clearly, radio sources must start small and grow larger. In the case of sources with lobes, the dynamics are fairly simple:[5] the jets feed the lobes, the pressure of the lobes increases and the lobes expand. How fast they expand depends on the density and pressure of the external medium. The highest-pressure phase of the external medium, and thus the most important phase from the point of view of the dynamics, is the X-ray emitting diffuse hot gas. For a long time, it was assumed that powerful sources would expand supersonically, pushing a shock through the external medium. However, X-ray observations show that the internal lobe pressures of powerful FRII sources are often close to the external thermal pressures and not much higher than the external pressures, as would be required for supersonic expansion.[12] The only unambiguously supersonically expanding system known consists of the inner lobes of the low-power radio galaxy Centaurus A which are probably a result of a comparatively recent outburst of the active nucleus.[13]

Host galaxies and environments

These radio sources are almost universally found

Seyfert galaxies show weak, small radio jets, but they are not radio-luminous enough to be classified as radio-loud. Such information as there is about the host galaxies of radio-loud quasars and blazars
suggests that they are also hosted by elliptical galaxies.

There are several possible reasons for this very strong preference for ellipticals. One is that ellipticals generally contain the most massive

intergalactic medium to confine the radio source. It may also be that the larger amounts of cold gas in spiral galaxies
in some way disrupts or stifles a forming jet. To date there is no compelling single explanation for the observations.

Unified models

The different types of radio-loud active galaxies are linked by unified models. The key observation that led to the adoption of unified models for powerful radio galaxies and radio-loud quasars was that all quasars appear to be beamed towards us, showing

BL Lac objects
.

Uses of radio galaxies

Distant sources

Radio galaxies and radio-loud quasars have been widely used, particularly in the 80s and 90s, to find distant galaxies: by selecting based on radio spectrum and then observing the host galaxy it was possible to find objects at high redshift at modest cost in telescope time. The problem with this method is that hosts of active galaxies may not be typical of galaxies at their redshift. Similarly, radio galaxies have in the past been used to find distant X-ray emitting clusters, but unbiased selection methods are now preferred. The most distant radio galaxy currently known is TGSS J1530+1049, at a redshift of 5.72.[18]

Standard rulers

Some work has been done attempting to use radio galaxies as standard rulers to determine cosmological parameters. This method is fraught with difficulty because a radio galaxy's size depends on both its age and its environment. When a model of the radio source is used, though, methods based on radio galaxies can give good agreement with other cosmological observations.[19]

Effects on environment

Whether or not a radio source is expanding supersonically, it must do work against the external medium in expanding, and so it puts energy into heating and lifting the external plasma. The minimum energy stored in the lobes of a powerful radio source might be 1053 J. The lower limit on the work done on the external medium by such a source is several times this. A good deal of the current interest in radio sources focuses on the effect they must have at the centres of clusters at the present day.[20] Equally interesting is their likely effect on structure formation over cosmological time: it is thought that they may provide a feedback mechanism to slow the formation of the most massive objects.

Terminology

Widely used terminology is awkward now that it is generally accepted that quasars and radio galaxies are the same objects (see above). The acronym DRAGN (for 'Double Radiosource Associated with Galactic Nucleus') was coined by Patrick Leahy in 1993 and is in use.[21][22] Extragalactic radio source is common but can lead to confusion, since many other extragalactic objects are detected in radio surveys, notably starburst galaxies. Radio-loud active galaxy is unambiguous, and so is often used in this article.

See also

References

External links