Respiratory tract infection

Source: Wikipedia, the free encyclopedia.
(Redirected from
Respiratory tract infections
)
Respiratory tract infection
Infectious disease

Respiratory tract infections (RTIs) are

infectious diseases involving the lower or upper respiratory tract.[1] An infection of this type usually is further classified as an upper respiratory tract infection (URI or URTI) or a lower respiratory tract infection (LRI or LRTI). Lower respiratory infections, such as pneumonia, tend to be far more severe than upper respiratory infections, such as the common cold
.

Types

Upper respiratory tract infection

The

upper respiratory tract is considered the airway above the glottis or vocal cords; sometimes, it is taken as the tract above the cricoid cartilage. This part of the tract includes the nose, sinuses, pharynx, and larynx.[2]

Typical infections of the upper respiratory tract include

Lower respiratory tract infection

The

bronchial tubes, bronchioles, and the lungs.[6]

Lower respiratory tract infections (LRIs) are generally more severe than upper respiratory infections. LRIs are the leading cause of death among all

H5N1 tend to bind to receptors deep in the lungs.[9]

Respiratory system amatomy

Diagnosis

Deaths from respiratory infections per million persons in 2012
  24-120
  121-151
  152-200
  201-244
  245-346
  347-445
  446-675
  676-866
  867-1,209
  1,210-2,090

urine testing.[11] The relative risk reduction of chest x-ray utilization in children screened with rapid viral testing is 77% compared with controls.[11] In 2013 researchers developed a breath tester that can promptly diagnose lung infections.[12][13]

Treatment

The CDC has reported that antibiotic prescription is high; 47 million prescriptions in the United States in 2018 were made for infections that do not need antibiotics to be treated with.

JAMA found that narrow-spectrum antibiotics, such as amoxicillin, are just as effective as broad-spectrum alternatives for treating acute respiratory tract infections in children, but have a lower risk of side effects.[22]

Prevention

Despite the superior filtration capability of

N95 filtering facepiece respirators measured in vitro, insufficient clinical evidence has been published to determine whether standard surgical masks and N95 filtering facepiece respirators are equivalent to preventing respiratory infections in healthcare workers.[23]

Adults in

prophylactically can prevent infection and improve adults' overall mortality in the ICU for adult patients receiving mechanical ventilation for at least 48 hours, and topical antibiotic prophylaxis probably reduces respiratory infections but not mortality.[24] However, the combination of treatments cannot rule out the relevant contribution in the systemic component of the observed reduction of mortality.[24] There is no sufficient evidence to recommend that antibiotics be used to prevent complications from an RTI of unknown cause in children under the age of 5 years old.[25] High-quality clinical research in the form of randomized controlled trials assessed the effectiveness of Vitamin D,[26] another review of poorer quality RCTs addressed the effectiveness of immunostimulants for preventing respiratory tract infections.[27] Despite some uncertainty due to small study sizes, there is some evidence that exercise may reduce severity of symptoms but had no impact on number of episodes or number of symptom days per episode.[28]

Viruses that cause RTI are more transmissible at very high or low

relative humidity; ideal humidity for indoor spaces is between 40 and 60%. Therefore, relative humidity in this range can help lessen the risk of aerosol transmission.[29]

Epidemiology

Respiratory infections often have strong seasonal patterns, with

relative humidity and temperature. Temperate climate winters have lower relative humidity, which is known to increase the transmission of influenza.[29]

Of the viruses that cause respiratory infections in humans, most have seasonal variation in prevalence. Influenza,

Human orthopneumovirus (RSV), and human coronaviruses are more prevalent in the winter. Human bocavirus and Human metapneumovirus occur year-round, rhinoviruses (which cause the common cold) occur mostly in the spring and fall, and human parainfluenza viruses have variable peaks depending on the specific strain. Enteroviruses, with the exception of rhinoviruses, tend to peak in the summer.[29]

References

External links