Rifle

Source: Wikipedia, the free encyclopedia.

Type 56

A rifle is a

buttstock for stability during shooting. Rifles are used extensively in warfare, law enforcement, hunting and target shooting sports
.

The term was originally rifled gun, with the

early modern machining process of creating grooves with cutting tools. By the 20th century, the weapon had become so common that the modern noun rifle is now often used for any long-shaped handheld ranged weapon designed for well-aimed discharge activated by a trigger
.

Like all typical firearms, a rifle's

).

The distinct feature that separates a rifle from the earlier

breech-loading allowed the use of elongated and aerodynamically efficient bullets, which did not yaw or tumble significantly in flight due to the spin.[citation needed
]

Terminology

Names of parts of the M1 Garand rifle, World War II era, from US Army field manual

Historically, rifles only fired a single projectile with each squeeze of the trigger. Modern rifles are commonly classified as single-shot, bolt-action, semi-automatic, or automatic. Single-shot, bolt-action, and semi-automatic rifles are limited by their designs to fire a single shot for each trigger pull. Only automatic rifles are capable of firing more than one round per trigger squeeze; however, some automatic rifles are limited to fixed bursts of two, three, or more rounds per squeeze.

Modern automatic rifles overlap to some extent in design and function with machine guns. In fact, many light machine guns are adaptations of existing automatic rifle designs, such as the RPK and M27 Infantry Automatic Rifle. A military's light machine guns are typically chambered for the same caliber ammunition as its service rifles. Generally, the difference between an automatic rifle and a machine gun comes down to weight, cooling system, and ammunition feed system. Rifles, with their relatively lighter components (which overheat quickly) and smaller capacity magazines, are incapable of sustained automatic fire in the way that machine guns are; they trade this capability in favor of increased mobility. Modern military rifles are fed by magazines, while machine guns are generally belt-fed. Many machine guns allow the operator to quickly exchange barrels in order to prevent overheating, whereas rifles generally do not. Most machine guns fire from an open bolt in order to reduce the danger of "cook-off", while almost all rifles fire from a closed bolt for accuracy. Machine guns are often crewed by more than one soldier; the rifle is an individual weapon.

The term "rifle" is sometimes used to describe larger rifled

naval rifles
.

In many works of fiction "rifle" refers to any weapon that has a

stock
and is shouldered before firing, even if the weapon is not rifled or does not fire solid projectiles (e.g. "laser rifle").

Historical overview

Rifling in a .35 Remington microgroove rifled barrel
Girdled bullet and twin rifle groove of the Brunswick rifle, mid-19th century

The origins of rifling are difficult to trace, but some of the earliest European experiments seem to have been carried out during the 15th century. Archers had long realized that a twist added to the tail feathers of their arrows gave them greater accuracy. Early muskets produced large quantities of smoke and soot, which had to be cleaned from the action and bore of the musket frequently, either through the action of repeated bore scrubbing, or a deliberate attempt to create "soot grooves" that would allow for more shots to be fired from the firearm. Some of the earliest examples of European grooved gun barrels were reportedly manufactured as early as 1440 and further developed by Gaspard Kollner of Vienna c. 1498, although other scholars allege they were a joint effort between Kollner and Augustus Kotter of Nuremberg c. 1520.[1][2] Military commanders preferred smoothbore weapons for infantry use because rifles were much more prone to problems due to powder fouling the barrel and because they took longer to reload and fire than muskets.[citation needed]

Rifles were created as an improvement in the accuracy of smoothbore muskets. In the early 18th century, Benjamin Robins, an English mathematician, realized that an elongated bullet would retain the momentum and kinetic energy of a musket ball, but would slice through the air with greater ease.[3] The black powder used in early muzzle-loading rifles quickly fouled the barrel, making loading slower and more difficult. The greater range of the rifle was considered to be of little practical use since the smoke from black powder quickly obscured the battlefield and made it almost impossible to aim the weapon from a distance. Since musketeers could not afford to take the time to stop and clean their barrels in the middle of a battle, rifles were limited to use by sharpshooters and non-military uses like hunting.[citation needed]

Muskets were smoothbore, large caliber weapons using spherical ammunition fired at relatively low velocity. Due to the high cost and great difficulty of precision manufacturing, and the need to load readily from the muzzle, the musket ball was a loose fit in the barrel. Consequently, on firing the ball bounced off the sides of the barrel when fired and the final direction on leaving the muzzle was unpredictable.[4]

The performance of early muskets defined the style of warfare at the time. Due to the lack of accuracy, soldiers were deployed in long lines (thus line infantry) to fire at the opposing forces. Precise aim was thus not necessary to hit an opponent. Muskets were used for comparatively rapid, imprecisely aimed volley fire, and the average soldier could be easily trained to use them.[citation needed]

In the

better source needed
]

The rifle was used for precise shooting, aiming, and firing at individual targets, instead of the musket's use for imprecise fire.[6]

A Henry rifle, the first successful lever action repeating rifle

By the time of the

King's Mountain.[8]

Later during the

60th Regiment, (Royal American), as well as sharpshooters and riflemen during the War of 1812, used the rifle to great effect during skirmishing. Because of a slower loading time than a musket, they were not adopted by the whole army. Since rifles were used by sharpshooters who did not routinely fire over other men's shoulders, long length was not required to avoid the forward line. A shorter length made a handier weapon in which tight-fitting balls did not have to be rammed so far down the barrel.[9]

The invention of the

Breech-loading weapons proved to have a much faster rate of fire than muzzleloaders, causing military forces to abandon muzzle loaders in favor of breech-loading designs in the late 1860s. In the later part of the 19th century, rifles were generally single-shot, breech-loading guns, designed for aimed, discretionary fire by individual soldiers. Then, as now, rifles had a stock, either fixed or folding, to be braced against the shoulder when firing.[citation needed
]

The adoption of cartridges and breech-loading in the 19th century was concurrent with the general adoption of rifles. In the early part of the 20th century, soldiers were trained to shoot accurately over long ranges with high-powered cartridges. World War I Lee–Enfield rifles (among others) were equipped with long-range 'volley sights' for massed firing at ranges of up to 1.6 km (1 mi). Individual shots were unlikely to hit, but a platoon firing repeatedly could produce a 'beaten ground' effect similar to light artillery or machine guns.[citation needed]

Currently, rifles are the most common firearm in general use for

shotguns are favored). Rifles derived from military designs have long been popular with civilian shooters.[10]

19th century

Napoléon Bonaparte
, c. 1800; (right) rifling of the Lepage carbine.

During the Napoleonic Wars the British army created several experimental units known as "Rifles", armed with the Baker rifle. These Rifle Regiments were deployed as skirmishers during the Peninsular war in Spain and Portugal, and were more effective than skirmishers armed with muskets due to their accuracy and long range.[citation needed]

Muzzle-loading

Gradually, rifles appeared with cylindrical barrels cut with helical grooves, the surfaces between the grooves being "lands". The innovation was shortly followed by the mass adoption of

breech-loading weapons, as it was not practical to push an overbore bullet down through a rifled barrel. The dirt and grime from prior shots were pushed down ahead of a tight bullet or ball (which may have been a looser fit in the clean barrel before the first shot), and loading was far more difficult, as the lead had to be deformed to go down in the first place, reducing the accuracy due to deformation. Several systems were tried to deal with the problem, usually by resorting to an under-bore bullet that expanded upon firing.[11]

The method developed by Delvigne for his rifles, with the lead bullet being supported by a wooden sabot at its base.

The original muzzle-loading rifle, with a closely fitting ball to take the rifling grooves, was loaded with difficulty, particularly when foul, and for this reason was not generally used for military purposes. With the advent of rifling, the bullet itself did not initially change but was wrapped in a greased, cloth patch to grip the rifling grooves.[12]

The first half of the 19th century saw a distinct change in the shape and function of the bullet. In 1826 Delvigne, a French infantry officer, invented a breech with abrupt shoulders on which a spherical bullet was rammed down until it caught the rifling grooves. Delvigne's method, however, deformed the bullet and was inaccurate.[13]

Soon after, the

Louis-Etienne de Thouvenin, which had a stem at the bottom of the barrel that would deform and expand the base of the bullet when rammed, therefore enabling accurate contact with the rifling. However, the area around the stem clogged and got dirty easily.[citation needed
]

Minié system – the "rifled musket"

Boshin war
(1868–1869).

One of the most famous was the Minié system, invented by French Army Captain

U.S. Civil War, due to their enhanced power and accuracy.[citation needed
]

Over the 19th century, bullet design also evolved, the bullets becoming gradually smaller and lighter. By 1910 the standard blunt-nosed bullet had been replaced by the pointed,

primers for ignition, and black powder was replaced by cordite, and then other nitro-cellulose-based smokeless powder mixtures, propelling bullets to higher velocities than before.[citation needed
]

The increased velocity meant that new problems arrived, and so bullets went from being soft lead to harder lead, then to

copper-jacketed, in order to better engage the spiral grooves without "stripping" them in the same way that a screw or bolt thread would be stripped if subjected to extreme forces.[14]

Breech loading

Loading mechanism of the Chassepot

From 1836, breech-loading rifles were introduced with the German Dreyse

bolt-action mechanisms, exemplified by the French Chassepot in 1866. Breech-loading was to have a major impact on warfare, as breech-loading rifles can be fired at a rate many times faster than muzzle-loaded rifles and significantly can be loaded from a prone rather than standing position. Firing prone (i.e., lying down) is more accurate than firing from a standing position, and a prone rifleman presents a much smaller target than a standing soldier. The higher accuracy and range, combined with reduced vulnerability generally benefited the defense while making the traditional battle between lines of standing and volleying infantrymen obsolete.[citation needed
]

Revolving rifle

Colt Model 1855 Carbine

Revolving rifles were an attempt to increase the rate of fire of rifles by combining them with the revolving firing mechanism that had been developed earlier for revolving pistols. Colt began experimenting with revolving rifles in the early 19th century, and other manufacturers like Remington later experimented with them as well. The

Colt Revolving Rifle Model 1855 was an early repeating rifle and the first one to be used by the U.S. Government and saw some limited action during the American Civil War. Revolvers, both rifles and pistols, tend to spray fragments of metal from the front of the cylinder.[15]

Repeating rifle

The Winchester repeating rifle was invented in 1866. The firer pulled on a lever to reload the rifle with a stored cartridge.[6]

Cartridge storage

An important area of development was the way that cartridges were stored and used in the weapon. The

lever-action rifle that was adopted by the United States. Over 20,000 were used during the American Civil War. It was the first adoption of a removable magazine-fed infantry rifle. The design was completed by Christopher Spencer in 1860.[16] It used copper rimfire cartridges stored in a removable seven-round tube magazine, enabling the rounds to be fired one after another. When the magazine was empty, it could be exchanged for another.[17]

Modern

Czechoslovak rifle vz. 24

In the Russo-Japanese War of 1904–1905, military observers from Europe and the United States witnessed a major conflict fought with high velocity bolt-action rifles firing smokeless powder.[18]: 179, 229, 230 [19]: 104, 105  The Battle of Mukden fought in 1905 consisted of nearly 343,000 Russian troops against over 281,000 Japanese troops. The Russian Mosin–Nagant Model 1891 in 7.62 mm was pitted against the Japanese Arisaka Type 30 bolt-action rifle in 6.5 mm;[19]: 104, 105, 155  both had velocities well over the 19th-century black powder velocities of under 2,000 feet per second (610 m/s).[19]: 187 [20]: 28, 29 

Until the late 19th century rifles tended to be very long, some long rifles reaching approximately 2 m (7 ft) in length to maximize accuracy, making early rifles impractical for use by cavalry. However, following the advent of more powerful smokeless powder, a shorter barrel did not impair accuracy as much. As a result, cavalry saw limited, but noteworthy, usage in 20th-century conflicts.[citation needed]

The advent of the massed, rapid firepower of the machine gun, submachine gun and rifled artillery was so quick as to outstrip the development of any way to attack a trench defended by riflemen and machine gunners. The carnage of World War I was perhaps the greatest vindication and vilification of the rifle as a military weapon.[citation needed]

The M1 Garand was a semi-automatic rapid-fire rifle developed for modern warfare use in World War II.[6]

suppressor

During and after World War II it became accepted that most infantry engagements occurred at ranges of less than 300 m; the range and power of the large full-powered rifle cartridges were "overkill", requiring weapons heavier than otherwise necessary. This led to Germany's development of the

arcminute).[citation needed
]

3D printed rifle

The Grizzly is a 3D printed .22-caliber rifle created around August 2013. It was created using a Stratasys Dimension 1200es printer.[21] It was created by a Canadian only known by the pseudonym "Matthew" who told The Verge that he was in his late 20s, and his main job was making tools for the construction industry.[21][22]

The original Grizzly fired a single shot before breaking.[21] Grizzly 2.0 fired fourteen bullets before getting damaged due to the strain.[22]

In October 2020, another 3D-printed 9mm rifle known as the "FGC-9mm" was created. It is reported that it can be made in 2 weeks with $500 of tools. A second model was later made in April 2021.[23]

Youth rifle

A youth rifle is a rifle designed or modified for fitting children or other small-framed shooters. A youth rifle is often a single-shot

bolt-action rifle, although some youth rifles are semi-automatic. They are usually very light, with a greatly shortened length of pull, which is necessary to accommodate children. Youth stocks are available for many popular rifles, such as the Ruger 10/22, a semi-automatic .22 LR rifle, allowing a youth rifle to be made from a standard rifle by simply changing the stock. The typical ages of shooters for such rifles vary from about age 5+.[citation needed
]

Technical aspects

Rifling

The usual form of rifling was helical grooves in a round bore.

Some early rifled firearms had barrels with a twisted polygonal bore. The Whitworth rifle was the first such type designed to spin the round for accuracy. Bullets for these guns were made to match the shape of the bore so the bullet would grip the rifle bore and take a spin that way. These were generally large caliber weapons, and the ammunition still did not fit tightly in the barrel. Many different shapes and degrees of spiraling were used in experimental designs. One widely produced example was the Metford rifling in the Pattern 1888 Lee–Metford service rifle. Although uncommon, polygonal rifling is still used in some weapons today, one example being the Glock line of pistols (which fire standard bullets). Many of the early designs were prone to dangerous backfiring, which could lead to the destruction of the weapon and serious injury to the person firing it.

Barrel wear

Benchrest shooting with a Mauser rifle

As the bullet enters the barrel, it inserts itself into the rifling, a process that gradually wears down the barrel, and also causes the barrel to heat up more rapidly. Therefore, some

cupro-nickel. Some ammunition is coated with molybdenum disulfide to further reduce internal friction – the so-called 'moly-coated' bullet.[24]

Rate of fire

Rifles were initially single-shot, muzzle-loading weapons. During the 18th century, breech-loading weapons were designed, which allowed the rifleman to reload while under cover, but defects in manufacturing and the difficulty in forming a reliable gas-tight seal prevented widespread adoption. During the 19th century, multi-shot

Springfield Rifle
models. The American M1903 closely copied Mauser's original design.

Range

Barrel rifling dramatically increased the range and accuracy of the musket. Indeed, throughout its development, the rifle's history has been marked by increases in range and accuracy. From the Minié rifle and beyond, the rifle has become ever more potent at long-range strikes.

In recent decades, large-caliber anti-materiel rifles, typically firing between 12.7 mm and 20 mm caliber cartridges, have been developed. The US

Barrett M82A1 is probably the best-known such rifle. A second example is the AX50 by Accuracy International. These weapons are typically used to strike critical, vulnerable targets such as computerized command and control vehicles, radio trucks, radar antennae, vehicle engine blocks and the jet engines of enemy aircraft. Anti-materiel rifles can be used against human targets, but the much higher weight of rifle and ammunition, and the massive recoil and muzzle blast, usually make them less than practical for such use. The Barrett M82 is designed with a maximum effective range of 1,800 m (1.1 mi), although it has a confirmed kill distance of 2,430 m (1.51 mi) in Afghanistan during Operation Anaconda in 2002.[26] The record for the longest confirmed kill shot stands at 3,540 m (11,610 ft), set by an unnamed soldier with Canada's elite special operations unit Joint Task Force 2 using a McMillan TAC-50 sniper rifle.[27]

Bullet rotational speed (RPM)

Bullets leaving a rifled barrel can spin at a

pitch of the rifling. Excessive rotational speed can exceed the bullet's designed limits and the inadequate centripetal force will fail to keep the bullet from disintegrating in a radial fashion.[28]
The rotational speed of the bullet can be calculated by using the formula below.

  • MV/ twist rate = rotational speed

Using metric units, the formula divides the number of millimeters in a meter (1000) by the barrel twist in millimeters (the length of travel along the barrel per full rotation). This number is then multiplied by the muzzle velocity in meters per second (m/s) and the number of seconds in a minute (60).

  • MV (in m/s) × (1000 mm /twist) × 60 s/min = Bullet RPM

For example, using a barrel that has a twist rate of 190 mm with a muzzle velocity of 900 m/s:

  • 900 m/s × (1000 mm /(190 mm)) × 60 s/min = 284 210 RPM

Using imperial units, the formula divides the number of inches in a foot (12) by the rate of twist that the barrel has. This number is multiplied by the muzzle velocity (MV) and the number of seconds in a minute (60). For example, a bullet with a muzzle velocity of 3,000 feet per second (910 m/s) leaving a barrel that twists once per foot (1/12") would rotate at 180,000rpm.[29]

  • MV (in fps) × (12 in. /twist rate) × 60 s/min. = Bullet RPM

For example, using a barrel that has a twist rate of 1 turn in 8" with a muzzle velocity of 3000 ft/s:

  • 3000 fps × (12"/(8"/rotation)) × 60 s/min. = 270,000 RPM

Caliber

Rifles may be chambered in a variety of calibers (bullet or barrel diameters), from as low as 4.4 mm (.17 inch) varmint calibers to as high as 20 mm (.80 caliber) in the case of the largest anti-tank rifles. The term caliber essentially refers to the width of the bullet fired through a rifle's barrel. Armies have consistently attempted to find and procure the most lethal and accurate caliber for their firearms.

The standard calibers used by the world's militaries tend to follow worldwide trends. These trends have significantly changed during the centuries of firearm design and re-design. Muskets were normally chambered for large calibers, such as .50 or .59 (12.7 mm or 15 mm), with the theory that these large bullets caused the most damage.

During World War I and II, most rifles were chambered in .30 caliber (7.62 mm), a combination of power and speed. Examples would be the .303 British Lee–Enfield, the American M1903 .30-06, and the German 8mm Mauser K98.

An exception was the Italian

6.5×52mm Mannlicher–Carcano
cartridge.

Detailed study of infantry combat during and after World War II revealed that most small-arms engagements occurred within 100 meters, meaning that the power and range of the traditional .30-caliber weapons (designed for engagements at 500 meters and beyond) were essentially wasted. The single greatest predictor of an individual soldier's combat effectiveness was the number of rounds he fired. Weapons designers and strategists realized that service rifles firing smaller-caliber projectiles would allow troops to carry far more ammunition for the same weight. The lower recoil and more generous magazine capacities of small-caliber weapons also allow troops a much greater volume of fire, compared to historical

battle rifles. Smaller, faster traveling, less stable projectiles have also demonstrated greater terminal ballistics and therein, a greater lethality than traditional .30-caliber rounds. Most modern service rifles fire a projectile of approximately 5.56 mm. Examples of firearms in this range are the American 5.56 mm M16 and the Russian 5.45×39mm AK-74
.

Types of rifle

See also

References

  1. ^ "Rifle Definition, Meaning & Usage". FineDictionary.com. 9 February 2012. Retrieved 3 March 2022.
  2. ^ Greener, William Wellington (1885). The Gun and Its Development: With Notes on Shooting, pp. 50 and 620. Cassell Books.
  3. Cornhill Magazine. April 1860. Archived from the original on 4 November 2010. {{cite journal}}: Cite journal requires |journal= (help
    )
  4. ^ Stanage, Justin (2000). "The Rifle-Musket vs. The Smoothbore Musket, a Comparison of the Effectiveness of the Two Types of Weapons Primarily at Short Ranges". IU South Bend Undergraduate Research Journal. 3: 84–89.
  5. ^ Clark, Brandon Louis (2011). Effect of Barrel Length on the Muzzle Velocity and Report from a Mosin-Nagant 7.62x54R Rifle (Undergraduate honors thesis). University of South Florida. Retrieved 16 April 2023.
  6. ^ a b c "Book Explores History of the American Rifle". NPR.org. Retrieved 11 February 2017.
  7. ^ "Those Tall American Patriots and Their Long Rifles".
  8. ^ "A Short History Of The Kentucky Long Rifle".
  9. ^ "Round Balls In Fast Twist Rifles | White Muzzleloading". whitemuzzleloading.com. Retrieved 15 March 2021.
  10. .
  11. ^ "Bullet". Britannica. 9 April 2020. Retrieved 17 September 2022.
  12. ^ "Rifling: Expanding Bullets and the Minie Rifle". Firearms History, Technology & Development. 16 May 2010. Retrieved 23 October 2021. The solution for hundreds of years was to wrap the bullet in a greased cloth patch and ram it down the barrel
  13. ^ McHale, Tom (3 February 2017). "Reloading: Bullet Materials and Shapes". GunsAmerica Digest. Retrieved 15 March 2021.
  14. ^ "Soft Cast Bullets, Jacketed Bullets & Copper Coated Bullets | Shop Black Powder Cast Bullets at Buffalo Arms". www.buffaloarms.com. Retrieved 15 March 2021.
  15. ^ "Revolving Rifles". Forgotten Weapons. Retrieved 15 March 2021.
  16. .
  17. ^ "Back to Basics: Center-fire Cartridge Cases". www.americanrifleman.org. Retrieved 15 March 2021.
  18. .
  19. ^ .
  20. .
  21. ^ a b c First 3-D printed rifle fires bullet, then breaks, NBC News, 26 July 2013. (Archived 10 September 2014 at the Wayback Machine)
  22. ^ a b World's first 3D-printed rifle gets update, fires 14 shots, The Verge, 4 August 2013.(Archived 6 October 2014 at the Wayback Machine)
  23. ^ "ATF's Proposed Rules Threaten a Legal Mess but No End to Ghost Guns". Reason.com. 14 May 2021. Retrieved 23 May 2021.
  24. ^ "GUIDE to Bullet Coating". www.6mmbr.com. Retrieved 12 January 2017.
  25. ^ a b Seton-Karr, Henry; Atkinson, Charles (1911). "Rifle" . In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 23 (11th ed.). Cambridge University Press. p. 329.
  26. ^ Friscolanti, Michael (15 May 2006). "We were abandoned". Maclean's. Rogers Publishing: 18–25.
  27. ^ Fife, Robert (21 June 2017). "Canadian elite special forces sniper makes record-breaking kill shot in Iraq". The Globe and Mail. Retrieved 28 February 2018.
  28. ^ "Topic of the Month: July 2001 – Twist Rate". Load From A Disk. Archived from the original on 12 May 2013. Retrieved 26 August 2010.
  29. ^ "Calculating Bullet RPM – Spin Rates and Stability". AccurateShooter.com. Retrieved 26 August 2010.

External links

  • Mick Bennett, The Story of the Rifle, a booklet from 1945 in PDF format
  • Friedrich Engels, "On Rifled Cannon", articles from the New York Tribune, April, May and June, 1860, reprinted in Military Affairs 21, no. 4 (Winter 1957) ed. Morton Borden, 193–198.
This page is based on the copyrighted Wikipedia article: Rifle. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy