Salmonellosis

Source: Wikipedia, the free encyclopedia.
Salmonellosis
blood tests[3][1]
Differential diagnosisOther types of gastroenteritis[2]
PreventionProper preparation and cooking of food and supervising contact between young children and pets[4]
TreatmentFluids by mouth, intravenous fluids, antibiotics[1]
Frequency1.35 million non–typhoidal cases per year (US)[1]
Deaths90,300 (2015)[5]

Salmonellosis is a

food-borne illness
in general), these are defined as diseases, usually either infectious or toxic in nature, caused by agents that enter the body through the ingestion of food. In humans, the most common symptoms are
weakened immune system are more likely to develop severe disease.[1] Specific types of Salmonella can result in typhoid fever or paratyphoid fever.[1][3] Typhoid fever and paratyphoid fever are specific types of salmonellosis, known collectively as enteric fever,[6] and are, respectively, caused by salmonella typhi & paratyphi bacteria, which are only found in humans.[7] Most commonly, salmonellosis cases arise from salmonella bacteria from animals,[8] and chicken is a major source for these infections.[9]

There are two

serovars within a species may be substantially different in their ability to cause disease. This suggests that epidemiologic classification of organisms at the subspecies level may improve management of Salmonella and similar pathogens.[10][11][12]

Both vegetarian and non-vegetarian populations are susceptible to Salmonella infections due to the consumption of contaminated meat and milk.[13] Infection is usually spread by consuming contaminated meat, eggs, water or milk.

blood tests.[1][3]

Efforts to prevent the disease include the proper washing, preparation, and cooking of food to appropriate temperature.

antibiotics are recommended.[4]

Salmonellosis is one of the most common causes of diarrhea globally.

Immunological parameters of infection

From an immunological point of view Salmonellosis is an infection caused by gram-negative bacteria infiltrating epithelial cells of the small intestine in the distal ileum whereby inducing acute inflammatory response called enteritis.[15] Salmonella can infect M-cells population overlying the Payer’s patches in the intestine, cells located in lamina propria of the intestinal mucosa and other epithelial cells.[15] After infecting cells in Peyer's patches, Salmonella can move to the mesenteric lymph nodes. This happens because lymphatic vessels are responsible for draining fluids, cells, and microbes from the intestinal tissues and carrying them to these lymph nodes. This process requires migration dependent on a factor known as CCR7. Once in the mesenteric lymph nodes, Salmonella can then enter the bloodstream, leading to a systemic infection that spreads throughout the body.[16] Virulence of the Salmonella is given by the Salmonella Pathogenicity Island 1 (SPI-1).[17] This needle-like structure, formed by a set of proteins, is known as the Type III secretion system. It enables Salmonella to effectively invade neighboring cells by injecting bacterial proteins directly into them, facilitating its spread and evasion of the host's immune defenses.[18] The first cells recruited to the Salmonella infection site are neutrophils, monocytes, and dendritic cells. Neutrophils play a key role in early defense against Salmonella, preventing its spread into the bloodstream. Studies in mice have shown that without neutrophils, there's an increase in the extracellular bacterial load during Salmonella infection. Moreover, these cells are essential for producing IFN-γ in the intestinal mucosa, which is crucial for controlling Salmonella Typhimurium through an IFN-γ-dependent mechanism.[19] Several other pro-inflammatory cytokines have been also observed after the infection of the epithelia such as IL-1α, TNFα, IL-12, IL-18 and IL-15, affecting the body-temperature by inducing fever, increase mucus production, activation of B and T leukocytes and polymorphonuclear leukocytes and macrophages recruitment to the site of infection.[20] Resident macrophages can also recognize flagellin and activate NLRC4 inflammasome complex to activate caspase-1 and IL-1β and IL-18 release.[21] Recruited monocytes are specifically adapted to regulating bacterial replication through the production of antimicrobial molecules (anti-microbial factors such as iNOS, TNF-α and IL-1β), however, they exhibit limited capability as antigen-presenting cells.[22] While monocytes help in containing the bacteria initially, the inability to effectively present antigens can delay or weaken the activation of T cells, which are necessary for a strong and specific immune response. In contrast, dendritic cells experience maturation through both direct pathways, mediated by bacteria, and indirect pathways, facilitated by cytokines in vivo, enhancing their ability to present antigens optimally. In a study focusing on the interaction between dendritic cells and intestinal epithelial cells, it was observed that when intestinal epithelial cells are stimulated by flagellin (a component of bacterial flagella, like those found in Salmonella), they trigger a specific response. This response involves the release of a molecule called CCL20. CCL20 is known to attract DCs, a type of immune cell. As a result, dendritic cells migrate towards the site of flagellin stimulation in the intestines. Recruitment of these cells to follicles plays a crucial role in initiating early T-cells mediated responses to Salmonella infection.[23] T–cell activation is limited to the draining mesenteric lymph nodes within 9–12 h since the initial infection as in any other lymph node activated T-cells specific to Salmonella were not detected.[24] Protective immunity against Salmonella appears to be primarily mediated by CD4+ T cells. This is evident in mice lacking a thymus, αβ T cells, MHC class-II, or T-bet+ Th1 cells, as they demonstrate an inability to resolve the infection.[25][26] Clearly Th1 response is crucial in response and clearance of Salmonella infection since mice depleted from T-bet or IFN-γ are unable to combat Salmonellosis. The presence of different cytokines in combination with cytokines produced from Th1 cells however suggests additional effect of Th17 response. IL-22 and IL-17 are contributing to protection against Salmonella by its mucosal production and antimicrobial peptides expression (IL-22) as well regulation of mucosal host defense and neutrophil recruitment (IL17) demonstrated by IL-17A deficient mice infected with Salmonella.[27][28] Conversely, mice lacking B-cells or γδ T cells can successfully clear the primary attenuated Salmonella infection, but a robust B-cell response is essential for resolving virulent Salmonella infections.[29] Different study revealed that B-cells are essential for protective immunity against Salmonella independent of antibody secretion because B-cells unable to secrete antibodies were still protective against Salmonella, suggesting that B-cells can serve as antigen presenting cells in this context and activate T-cells responses.[30] Further experiments focused on CD8+ cytotoxic lymphocytes revealed their crucial role in Salmonella clearance. Depletion of CD8+ T cells resulted in the failure to resolve the infection in mice.[31] These findings strongly suggest that CD4+-mediated protection is facilitated by the contribution of CD8+ cytotoxic T cells in the immune response against Salmonella. The investigation of immune memory revealed robust bacterial clearance facilitated by both CD4+ and CD8+ responses. Interestingly, this memory was not sufficient in adoptive transfer into other mice, despite possessing a potent response. However, when serum transfer was employed, the observed response indicated the crucial antibody-dependent role in secondary Salmonella infections.[32] Immunocompromised individuals (for example AIDS, malnutrition or those taking immunosuppressive treatment) are more susceptible to salmonellosis and contribute to bacteremia caused by neutropenia in immunocompromised individuals comparing immunocompetent ones.[33]

Signs and symptoms

Enteritis

After a short incubation period of a few hours to one day, the bacteria multiply in the small intestine, causing an intestinal inflammation (enteritis). Most people with salmonellosis develop diarrhea, fever, vomiting, and abdominal cramps 12 to 72 hours after infection.[34] Diarrhea is often watery and non-bloody but may be mucoid and bloody.[35] In most cases, the illness lasts four to seven days, and does not require treatment. In some cases, though, the diarrhea may be so severe that the patient becomes dangerously dehydrated and must be hospitalized. At the hospital, the patient may receive fluids intravenously to treat the dehydration, and may be given medications to provide symptomatic relief, such as fever reduction. In severe cases, the Salmonella infection may spread from the intestines to the blood stream, and then to other body sites, and can cause death, unless the person is treated promptly with antibiotics.[citation needed]

In otherwise healthy adults, the symptoms can be mild. Normally, no

]

Those whose only symptom is diarrhea usually completely recover, but their bowel habits may not return to normal for several months.[36]

Typhoid fever

Typhoid fever occurs when Salmonella bacteria enter the lymphatic system and cause a

toxemia.[34]

Long-term

Salmonellosis is associated with later irritable bowel syndrome[37] and inflammatory bowel disease.[38] Evidence however does not support it being a direct cause of the latter.[38]

A small number of people afflicted with salmonellosis experience reactive arthritis, which can last months or years and can lead to chronic arthritis.[39] In sickle-cell anemia, osteomyelitis due to Salmonella infection is much more common than in the general population. Though Salmonella infection is frequently the cause of osteomyelitis in people with sickle-cell, it is not the most common cause, which is Staphylococcus infection.[40]

Those infected may become asymptomatic carriers, but this is relatively uncommon, with shedding observed in only 0.2 to 0.6% of cases after a year.[41]

Causes

An infographic illustrating how Salmonella bacteria spread from the farm
  • Contaminated food, often having no unusual look or smell[42]
  • Poor kitchen hygiene, especially problematic in institutional kitchens and restaurants because this can lead to a significant outbreak
  • Excretions from either sick or infected but apparently clinically healthy people and animals (especially dangerous are caregivers and animals)
  • Polluted surface water and standing water (such as in shower hoses or unused water dispensers)
  • Unhygienically thawed poultry (the meltwater contains many bacteria)
  • An association with reptiles (pet tortoises, snakes,[43] iguanas,[44][45] and aquatic turtles) is well described.[46]
  • Amphibians such as frogs

Salmonella bacteria can survive for some time without a host; they are frequently found in polluted water, with contamination from the excrement of carrier animals being particularly important.[citation needed]

The European Food Safety Authority highly recommends that when handling raw turkey meat, consumers and people involved in the food supply chain should pay attention to personal and food hygiene.[47]

An estimated 142,000 Americans are infected each year with Salmonella Enteritidis from

chicken eggs,[48] and about 30 die.[49] The shell of the egg may be contaminated with Salmonella by feces or environment, or its interior (yolk) may be contaminated by penetration of the bacteria through the porous shell or from a hen whose infected ovaries contaminate the egg during egg formation.[50][51]

Nevertheless, such interior egg yolk contamination is theoretically unlikely.[52][53][54][55] Even under natural conditions, the rate of infection was very small (0.6% in a study of naturally contaminated eggs[56] and 3.0% among artificially and heavily infected hens[57]).

Prevention

The US Food and Drug Administration (FDA) has published guidelines to help reduce the chance of food-borne salmonellosis.[58] Food must be cooked to 145–165 °F (63–74 °C), and liquids such as soups or gravies should be boiled when reheating. Freezing kills some Salmonella, but it is not sufficient to reliably reduce them below infectious levels. While Salmonella is usually heat-sensitive, it acquires heat-resistance in high-fat environments such as peanut butter.[59]

Vaccine

Antibodies against nontyphoidal Salmonella were first found in

Blantyre found that children up to two years old develop antibodies that aid in killing the bacteria. This could lead to a possible Salmonella vaccine for humans.[60]

A 2014 study tested a vaccine on chickens which offered efficient protection against salmonellosis.[61]

Vaccination of chickens against Salmonella essentially wiped out the disease in the United Kingdom. A similar approach was considered in the United States, but the Food and Drug Administration decided not to mandate vaccination of hens.[62]

Treatment

Electrolytes may be replenished with oral rehydration supplements (typically containing salts sodium chloride and potassium chloride).[citation needed]

Appropriate antibiotics, such as

antibiotic resistance.[citation needed
]

There is no evidence of benefit of treating healthy people with diarrhea due to non-typhoidal salmonellosis. However, the evidence for the very young, very old or people with severe diseases are uncertain.[63]

Epidemiology

United States

Salmonellosis annually causes, per CDC estimation, about 1.35 million illnesses, 26,500 hospitalizations, and 420 deaths in the United States every year.

Salmonella Enteritidis specifically from chicken eggs, and about 30 die.[49]

In 2010, an analysis of death certificates in the United States identified a total of 1,316 Salmonella-related deaths from 1990 to 2006. These were predominantly among older adults and those who were immunocompromised.[65] The U.S. government reported as many as 20% of all chickens were contaminated with Salmonella in the late 1990s, and 16.3% were contaminated in 2005.[66]

The United States has struggled to control salmonella infections, with the rate of infection rising from 2001 to 2011. In 1998, the USDA moved to close plants if salmonella was found in excess of 20 percent, which was the industry's average at the time, for three consecutive tests.[67] Texas-based Supreme Beef Processors, Inc. sued on the argument that Salmonella is naturally occurring and ultimately prevailed when a federal appeals court affirmed a lower court.[67] These issues were highlighted in a proposed Kevin's Law (formally proposed as the Meat and Poultry Pathogen Reduction and Enforcement Act of 2003), of which components were included the Food Safety Modernization Act passed in 2011, but that law applies only to the FDA and not the USDA.[67] The USDA proposed a regulatory initiative in 2011 to Office of Management and Budget.[68]

Salmonella is found in 8% of the chicken parts tested by the USDA and 25% of ground chicken.[69]

Europe

An outbreak of salmonellosis started in Northern Europe in July 2012, caused by Salmonella thompson. The infections were linked to smoked salmon from the manufacturer Foppen, where the contamination had occurred. Most infections were reported in the Netherlands; over 1060 infections with this subspecies and four fatalities were confirmed.[70][71]

A case of widespread infection was detected mid-2012 in seven EU countries. Over 400 people had been infected with Salmonella enterica serovar Stanley (S. Stanley) that usually appears in the regions of Southeast Asia. After several DNA analyses seemed to point to a specific Belgian strain, the "Joint ECDC/E FSA Rapid Risk Assessment" report detected turkey production as the source of infection.[72]

In Germany, food poisoning infections must be reported.[73] Between 1990 and 2005, the number of officially recorded cases decreased from about 200,000 to about 50,000.[citation needed]

Elsewhere

In March 2007, around 150 people were diagnosed with salmonellosis after eating tainted food at a governor's reception in Krasnoyarsk, Russia. Over 1,500 people attended the ball on March 1 and fell ill as a consequence of ingesting Salmonella-tainted sandwiches.[citation needed]

In Singapore about 150 people fell sick after eating Salmonella-tainted chocolate cake produced by a major bakery chain in December 2007.[74]

South Africa reported contamination of its poultry carcasses by Salmonella. Egypt showed that Salmonella was predominant in poultry along with other non-typhoid strains. In Indonesia, the isolation of Salmonella Typhi was the main focus, while other serovars were also included from poultry. In India, Salmonella was predominant in poultry. Romania reported Salmonella serovars in poultry that affect humans.[75]

History

Both salmonellosis and the microorganism genus Salmonella derive their names from a modern Latin coining after

Daniel E. Salmon (1850–1914), an American veterinary surgeon. He had help from Theobald Smith, and together they found the bacterium in pigs.[citation needed
]

Salmonella enterica was possibly the cause of the

Four-inch regulation

The "Four-inch regulation" or "Four-inch law" is a colloquial name for a regulation issued by the U.S. FDA in 1975, restricting the sale of turtles with a carapace length less than four inches (10 cm).[77]

The regulation was introduced, according to the FDA, "because of the public health impact of turtle-associated salmonellosis". Cases had been reported of young children placing small turtles in their mouths, which led to the size-based restriction.[citation needed]

Regulation elsewhere

FSSAI regulation

The FSSAI has been established under the Food Safety and Standards Act, 2006, which is a consolidating statute related to food safety and regulation in India. FSSAI is responsible for protecting and promoting public health through the regulation and supervision of food safety. The major importance of the FSSAI License is that it ensures that the food is verified chemically and hence is safe to consume. 'Health before wealth' is a common quote as well as fact. Therefore, anything related directly to health is a matter of great sensitivity.[78]

Research

Bacteriophage treatment

Therapy with phages or bacteriophages (viruses that infect bacteria) has been proposed as a treatment for Salmonella infections. Bacteriophages have a number of advantages over other alternatives: (i) high efficacy in killing bacteria, (ii) minimal or no side effects, (iii) no allergic effects, (iv) production is rapid and inexpensive, and (v) they are host-specific and therefore do not affect the intestinal microbiota or other saprophytic bacteria in the environmental milieu.

The use of bacteriophages is effective in the prevention and treatment of bacterial pathogens in animals. In the specific case of poultry, good results have been obtained by reducing the infection of Salmonella, E. coli and Campylobacter. Until now, the use of phage therapy to control Salmonella in poultry could reduce, but not completely eliminate bacterial colonisation.[79]

Bacteriophages are suitable to prevent or reduce the colonization of pathogenic bacteria and therefore diseases in cattle,[80] where phages are supplied either individually or in cocktail to farm animals, the routes and methods of application were examined by various authors and the application of phages through oral tube feeding or feed intake showed a reduction of pathogenic bacteria without affecting the intestinal microbiota of the host.[81] Current research is focused on improved phage delivery in a manner that avoids decreasing phage titer due to destabilization or inactivation by gastric pH extremes.

See also

References

  1. ^ a b c d e f g h i j k l m n o p "Salmonella". CDC. 13 November 2019. Archived from the original on 6 May 2022. Retrieved 5 May 2022.
  2. ^ from the original on 2017-09-10.
  3. ^ a b c "Salmonella Infections". MedlinePlus. Archived from the original on 30 April 2017. Retrieved 7 May 2017.
  4. ^ a b c d e f g h i j "Salmonella (non-typhoidal)". World Health Organization. December 2016. Archived from the original on 20 April 2017. Retrieved 7 May 2017.
  5. ^
    PMID 27733281
    .
  6. .
  7. ^ "Typhoid & Paratyphoid Fever | CDC Yellow Book 2024".
  8. ^ "Salmonella and Food". 5 June 2023.
  9. ^ "Chicken and Food Poisoning". 14 November 2023.
  10. .
  11. . Retrieved 13 September 2021.
  12. .
  13. .
  14. ^ "Salmonella". World Health Organization. Archived from the original on 17 April 2017. Retrieved 7 May 2017.
  15. ^
    S2CID 33369729
    .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. ^ .
  35. ^ "Nontyphoidal Salmonella Infections - Infectious Diseases - Merck Manuals Professional Edition". Merck Manuals Professional Edition. Retrieved 2018-09-15.
  36. ^ "What is Salmonellosis?". US Center of Disease Control and Prevention. 2019-02-08. Archived from the original on 2014-03-31.
  37. S2CID 42240663
    .
  38. ^ .
  39. .
  40. .
  41. ^ a b "Nontyphoidal Salmonella Infections". Merck Manual. Archived from the original on 2016-09-19. Retrieved 2016-09-19.
  42. ^ Goldberg J (24 February 2012). "Are the bacteria that make food smell and taste bad the same ones that make you sick?". Tufts.edu. Retrieved 28 May 2018.
  43. PMID 21781321
    .
  44. ^ "Reptile-Associated Salmonellosis—Selected States, 1998–2002". Centers for Disease Control and Prevention. 12 December 2003. Archived from the original on 6 October 2011. Retrieved 9 October 2011.
  45. PMID 9041295
    .
  46. ^ "Ongoing investigation into reptile associated salmonella infections". Health Protection Report. 3 (14). 9 April 2009. Archived from the original on 29 April 2009. Retrieved 12 April 2009.
  47. .
  48. ^ "Playing It Safe With Eggs". FDA Food Facts. 2013-02-28. Archived from the original on 2013-03-01. Retrieved 2013-03-02. The U.S. Food and Drug Administration (FDA) estimates that 142,000 illnesses each year are caused by consuming eggs contaminated with Salmonella.
  49. ^
    Washington Post. Archived
    from the original on 2011-06-04. Retrieved 2009-07-07.
  50. . Eggs can be contaminated on the outer shell surface and internally. Internal contamination can be the result of penetration through the eggshell or by direct contamination of egg contents before oviposition, originating from infection of the reproductive organs. Once inside the egg, the bacteria need to cope with antimicrobial factors in the albumen and vitelline membrane before migration to the yolk can occur
  51. . Salmonella enteritidis can contaminate the contents of clean, intact shell eggs as a result of infections of the reproductive tissue of laying hens. The principal site of infection appears to be the upper oviduct. In egg contents, the most important contamination sites are the outside of the vitelline membrane or the albumen surrounding it. In fresh eggs, only a few salmonellae are present. As albumen is an iron-restricted environment, growth only occurs with storage-related changes to vitelline membrane permeability, which allows salmonellae to invade yolk contents.
  52. . Normally, the oviduct of the hen is sterile and therefore the shell and internal contents of the egg are also free of microorganisms (10,16). In some instances, however, the ovaries and oviduct may be infected with Salmonella and these may be deposited inside the egg (12). More frequently, however, the egg becomes contaminated after it is laid.
  53. . when hens were artificially infected to test for transmission rate to yolks: "Mature laying hens were inoculated intravenously with 106 colony-forming units of Salmonella enteritidis, Salmonella typhimurium, Salmonella infantis, Salmonella hadar, Salmonella heidelberg, or Salmonella montevideo to cause the systemic infection. Salmonella Enteritidis was recovered from three yolks of the laid eggs (7.0%), suggesting egg contamination from the transovarian transmission of S. enteritidis."
  54. from the original on 2011-07-24. Retrieved 2010-08-20. In this study, egg yolks were infected at the surface of the yolk (vitelline membrane) to determine the percentage of yolk contamination (a measure used to determine egg contamination resistance, with numbers lower than 95% indicating increasing resistance): Overall, the frequency of penetration of Salmonella Enteritidis into the yolk contents of eggs from individual lines of hens ranged from 30 to 58% and the mean concentration of Salmonella Enteritidis in yolk contents after incubation ranged from 0.8 to 2.0 log10 cfu/mL.
  55. ^ Jaeger G (Jul–Aug 2009). "Contamination of eggs of laying hens with S. Enteritidis". Veterinary Survey (Tierärztliche Umschau). 64 (7–8): 344–348. Retrieved 2010-08-20. The migration of the bacterium into the nutritionally rich yolk is constrained by the lysozyme loaded vitelline membrane, and would need warm enough storage conditions within days and weeks. The high concentration on of antibodies of the yolk does not inhibit the Salmonella multiplication. Only seldom does transovarian contamination of the developing eggs with S. enteritidis make this bacterium occur in laid eggs, because of the bactericidal efficacy of the antimicrobial peptides
  56. PMID 2050203
    . Over 5700 hens eggs from 15 flocks naturally infected with Salmonella enteritidis were examined individually for the presence of the organism in either egg contents or on shells. Thirty-two eggs (0·6%) were positive in the contents. In the majority, levels of contamination were low.
  57. from the original on 2010-03-10. Retrieved 2010-08-20. when hens are artificially infected with unrealistically large doses (according to the author): In the present study, groups of laying hens were experimentally infected with large oral doses of Salmonella Heidelberg, Salmonella Enteritidis phage type 13a, or Salmonella Enteritidis phage type 14b. For all of these isolates, the overall frequency of ovarian colonization (34.0%) was significantly higher than the frequency of recovery from either the upper (22.9%) or lower (18.1%) regions of the oviduct. No significant differences were observed between the frequencies of Salmonella isolation from egg yolk and albumen (4.0% and 3.3%, respectively).
  58. ^ "Salmonella Questions and Answers". USDA Food Safety and Inspection Service. 2006-09-20. Archived from the original on 2009-01-15. Retrieved 2009-01-21.
  59. ^ "FDA issues peanut safety guidelines for foodmakers". Reuters. 2009-03-10. Archived from the original on 2009-03-12.
  60. PMID 18357343
    .
  61. .
  62. from the original on 2016-04-17. Retrieved 2016-03-12.
  63. .
  64. ^ "Salmonella Questions and Answers | CDC". www.cdc.gov. 2023-04-23.
  65. PMID 20617938
    .
  66. ^ Burros M (March 8, 2006). "More Salmonella Is Reported in Chickens". The New York Times. Archived from the original on January 9, 2016. Retrieved 2007-05-13.
  67. ^ a b c "Salmonella Lurks From Farm to Fork « News21 2011 National Project". foodsafety.news21.com. Archived from the original on 2016-06-02. Retrieved 2016-09-18.
  68. ^ "Ground Turkey Recall Shows We Still Need Kevin's Law | Food Safety News". 2011-08-12. Archived from the original on 2016-10-09. Retrieved 2016-09-18.
  69. ^ Simon B, Yeung M, Grabell I, Hwang M (29 October 2021). "America's Food Safety System Failed to Stop a Salmonella Epidemic. It's Still Making People Sick". ProPublica. Retrieved 2021-11-03.
  70. ^ Veelgestelde vragen Salmonella Thompson 15 oktober 2012, Rijksinstituut voor Volksgezondheid en Milieu [Frequently asked questions Salmonella Thompson 15 October 2012, Netherlands Institute for Public Health and the Environment].
  71. ^ "Salmonella besmetting neemt verder af, 2 november 2012, Rijksinstituut voor Volksgezondheid en Milieu" [Salmonella infections continue to decline 2 November 2012, Netherlands Institute for Public Healthand the Environment].
  72. on 2014-04-13.
  73. ^ § 6 and § 7 of the German law on infectious disease prevention, Infektionsschutzgesetz
  74. ^ Hong L (7 December 2007). "PrimaDeli food poisoning cases increase to 153". Channel NewsAsia. Archived from the original on 8 December 2007.
  75. PMID 25596565
    .
  76. .
  77. ^ "Human Health Hazards Associated with Turtles". U.S. Food and Drug Administration. Archived from the original on 2007-06-09. Retrieved 2007-06-29.
  78. ^ "The Food Safety and Standards Authority of India (FSSAI)".
  79. PMID 29966329
    .
  80. .
  81. .

External links

  • CDC website, Division of Bacterial and Mycotic Diseases, Disease Listing: Salmonellosis