Science

Page semi-protected
Source: Wikipedia, the free encyclopedia.

Science is a rigorous, systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the world.[1][2] Modern science is typically divided into three major branches:[3] the natural sciences (e.g., physics, chemistry, and biology), which study the physical world; the social sciences (e.g., economics, psychology, and sociology), which study individuals and societies;[4][5] and the formal sciences (e.g., logic, mathematics, and theoretical computer science), which study formal systems, governed by axioms and rules.[6][7] There is disagreement whether the formal sciences are science disciplines,[8][9][10] as they do not rely on empirical evidence.[11][9] Applied sciences are disciplines that use scientific knowledge for practical purposes, such as in engineering and medicine.[12][13][14]

The history of science spans the majority of the historical record, with the earliest written records of identifiable predecessors to modern science dating to Bronze Age Egypt and Mesopotamia from around 3000 to 1200 BCE. Their contributions to mathematics, astronomy, and medicine entered and shaped the Greek natural philosophy of classical antiquity, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes, while further advancements, including the introduction of the Hindu–Arabic numeral system, were made during the Golden Age of India.[15]: 12 [16][17][18] Scientific research deteriorated in these regions after the fall of the Western Roman Empire during the Early Middle Ages (400 to 1000 CE), but in the Medieval renaissances (Carolingian Renaissance, Ottonian Renaissance and the Renaissance of the 12th century) scholarship flourished again. Some Greek manuscripts lost in Western Europe were preserved and expanded upon in the Middle East during the Islamic Golden Age,[19] along with the later efforts of Byzantine Greek scholars who brought Greek manuscripts from the dying Byzantine Empire to Western Europe at the start of the Renaissance.

The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th century revived "natural philosophy",[20][21][22] which was later transformed by the Scientific Revolution that began in the 16th century[23] as new ideas and discoveries departed from previous Greek conceptions and traditions.[24][25] The scientific method soon played a greater role in knowledge creation and it was not until the 19th century that many of the institutional and professional features of science began to take shape,[26][27] along with the changing of "natural philosophy" to "natural science".[28]

New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems.[29][30] Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions,[31] government agencies, and companies.[32][33] The practical impact of their work has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the ethical and moral development of commercial products, armaments, health care, public infrastructure, and environmental protection.

Etymology

The word science has been used in

present participle scīre, meaning "to know".[34]

There are many hypotheses for science's ultimate word origin. According to Michiel de Vaan, Dutch linguist and Indo-Europeanist, sciō may have its origin in the Proto-Italic language as *skije- or *skijo- meaning "to know", which may originate from Proto-Indo-European language as *skh1-ie, *skh1-io, meaning "to incise". The Lexikon der indogermanischen Verben proposed sciō is a back-formation of nescīre, meaning "to not know, be unfamiliar with", which may derive from Proto-Indo-European *sekH- in Latin secāre, or *skh2-, from *sḱʰeh2(i)- meaning "to cut".[35]

In the past, science was a synonym for "knowledge" or "study", in keeping with its Latin origin. A person who conducted scientific research was called a "natural philosopher" or "man of science".[36] In 1834, William Whewell introduced the term scientist in a review of Mary Somerville's book On the Connexion of the Physical Sciences,[37] crediting it to "some ingenious gentleman" (possibly himself).[38]

History

Early history

Clay tablet with markings, three columns for numbers and one for ordinals
The Plimpton 322 tablet by the Babylonians records Pythagorean triples, written in about 1800 BCE

Science has no single origin. Rather, systematic methods emerged gradually over the course of tens of thousands of years,[39][40] taking different forms around the world, and few details are known about the very earliest developments. Women likely played a central role in prehistoric science,[41] as did religious rituals.[42] Some scholars use the term "protoscience" to label activities in the past that resemble modern science in some but not all features;[43][44][45] however, this label has also been criticized as denigrating,[46] or too suggestive of presentism, thinking about those activities only in relation to modern categories.[47]

Direct evidence for scientific processes becomes clearer with the advent of

writing systems in early civilizations like Ancient Egypt and Mesopotamia, creating the earliest written records in the history of science in around 3000 to 1200 BCE.[15]: 12–15 [16] Although the words and concepts of "science" and "nature" were not part of the conceptual landscape at the time, the ancient Egyptians and Mesopotamians made contributions that would later find a place in Greek and medieval science: mathematics, astronomy, and medicine.[48][15]: 12  From the 3rd millennium BCE, the ancient Egyptians developed a decimal numbering system,[49] solved practical problems using geometry,[50] and developed a calendar.[51] Their healing therapies involved drug treatments and the supernatural, such as prayers, incantations, and rituals.[15]
: 9 

The ancient

intense interest in medicine and the earliest medical prescriptions appeared in Sumerian during the Third Dynasty of Ur.[52][54] They seem to have studied scientific subjects which had practical or religious applications and had little interest in satisfying curiosity.[52]

Classical antiquity

Framed mosaic of philosophers gathering around and conversing
Plato's Academy mosaic, made between 100 BCE to 79 AD, shows many Greek philosophers and scholars

In

pre-Socratic philosophers, the same words tend to be used to describe the natural "way" in which a plant grows,[56] and the "way" in which, for example, one tribe worships a particular god. For this reason, it is claimed that these men were the first philosophers in the strict sense and the first to clearly distinguish "nature" and "convention".[57]

The early

A turning point in the history of early philosophical science was Socrates' example of applying philosophy to the study of human matters, including human nature, the nature of political communities, and human knowledge itself. The Socratic method as documented by Plato's dialogues is a dialectic method of hypothesis elimination: better hypotheses are found by steadily identifying and eliminating those that lead to contradictions. The Socratic method searches for general commonly-held truths that shape beliefs and scrutinizes them for consistency.[66] Socrates criticized the older type of study of physics as too purely speculative and lacking in self-criticism.[67]

teleological philosophy.[68] In the 3rd century BCE, Greek astronomer Aristarchus of Samos was the first to propose a heliocentric model of the universe, with the Sun at the center and all the planets orbiting it.[69] Aristarchus's model was widely rejected because it was believed to violate the laws of physics,[69] while Ptolemy's Almagest, which contains a geocentric description of the Solar System, was accepted through the early Renaissance instead.[70][71] The inventor and mathematician Archimedes of Syracuse made major contributions to the beginnings of calculus.[72] Pliny the Elder was a Roman writer and polymath, who wrote the seminal encyclopedia Natural History.[73][74][75]

Positional notation for representing numbers likely emerged between the 3rd and 5th centuries CE along Indian trade routes. This numeral system made efficient arithmetic operations more accessible and would eventually become standard for mathematics worldwide.[76]

Middle Ages

peacock
, made in the 6th century

Due to the

Greek conceptions of the world deteriorated in Western Europe.[15]: 194  During the period, Latin encyclopedists such as Isidore of Seville preserved the majority of general ancient knowledge.[77] In contrast, because the Byzantine Empire resisted attacks from invaders, they were able to preserve and improve prior learning.[15]: 159  John Philoponus, a Byzantine scholar in the 500s, started to question Aristotle's teaching of physics, introducing the theory of impetus.[15]: 307, 311, 363, 402  His criticism served as an inspiration to medieval scholars and Galileo Galilei, who extensively cited his works ten centuries later.[15]: 307–308 [78]

During

Byzantine empire and Arabic translations were done by groups such as the Nestorians and the Monophysites. Under the Caliphate, these Arabic translations were later improved and developed by Arabic scientists.[80] By the 6th and 7th centuries, the neighboring Sassanid Empire established the medical Academy of Gondeshapur, which is considered by Greek, Syriac, and Persian physicians as the most important medical center of the ancient world.[81]

The

Mongol invasions in the 13th century. Ibn al-Haytham, better known as Alhazen, used controlled experiment in his optical study.[a][85][86] Avicenna's compilation of the Canon of Medicine, a medical encyclopedia, is considered to be one of the most important publications in medicine and was used until the 18th century.[87]

By the eleventh century, most of Europe had become Christian,[15]: 204  and in 1088, the University of Bologna emerged as the first university in Europe.[88] As such, demand for Latin translation of ancient and scientific texts grew,[15]: 204  a major contributor to the Renaissance of the 12th century. Renaissance scholasticism in western Europe flourished, with experiments done by observing, describing, and classifying subjects in nature.[89] In the 13th century, medical teachers and students at Bologna began opening human bodies, leading to the first anatomy textbook based on human dissection by Mondino de Luzzi.[90]

Renaissance

Drawing of planets' orbit around the Sun
Drawing of the heliocentric model as proposed by the Copernicus's De revolutionibus orbium coelestium

New developments in optics played a role in the inception of the

exploited and studied by the artists of the Renaissance. This theory uses only three of Aristotle's four causes: formal, material, and final.[91]

In the sixteenth century, Nicolaus Copernicus formulated a heliocentric model of the Solar System, stating that the planets revolve around the Sun, instead of the geocentric model where the planets and the Sun revolve around the Earth. This was based on a theorem that the orbital periods of the planets are longer as their orbs are farther from the center of motion, which he found not to agree with Ptolemy's model.[92]

Galileo had made significant contributions to astronomy, physics and engineering. However, he became persecuted after Pope Urban VIII sentenced him for writing about the heliocentric model.[95]

The

laws of nature and the improvement of all human life.[97] Descartes emphasized individual thought and argued that mathematics rather than geometry should be used to study nature.[98]

Age of Enlightenment

see caption
Title page of the 1687 first edition of Philosophiæ Naturalis Principia Mathematica by Isaac Newton

At the start of the Age of Enlightenment, Isaac Newton formed the foundation of classical mechanics by his Philosophiæ Naturalis Principia Mathematica, greatly influencing future physicists.[99] Gottfried Wilhelm Leibniz incorporated terms from Aristotelian physics, now used in a new non-teleological way. This implied a shift in the view of objects: objects were now considered as having no innate goals. Leibniz assumed that different types of things all work according to the same general laws of nature, with no special formal or final causes.[100]

During this time, the declared purpose and value of science became producing wealth and inventions that would improve human lives, in the materialistic sense of having more food, clothing, and other things. In Bacon's words, "the real and legitimate goal of sciences is the endowment of human life with new inventions and riches", and he discouraged scientists from pursuing intangible philosophical or spiritual ideas, which he believed contributed little to human happiness beyond "the fume of subtle, sublime or pleasing [speculation]".[101]

Science during the Enlightenment was dominated by

scientific societies and academies,[102] which had largely replaced universities as centers of scientific research and development. Societies and academies were the backbones of the maturation of the scientific profession. Another important development was the popularization of science among an increasingly literate population.[103] Enlightenment philosophers turned to a few of their scientific predecessors – Galileo, Kepler, Boyle, and Newton principally – as the guides to every physical and social field of the day.[104][105]

The 18th century saw significant advancements in the practice of medicine[106] and physics;[107] the development of biological taxonomy by Carl Linnaeus;[108] a new understanding of magnetism and electricity;[109] and the maturation of chemistry as a discipline.[110] Ideas on human nature, society, and economics evolved during the Enlightenment. Hume and other Scottish Enlightenment thinkers developed A Treatise of Human Nature, which was expressed historically in works by authors including James Burnett, Adam Ferguson, John Millar and William Robertson, all of whom merged a scientific study of how humans behaved in ancient and primitive cultures with a strong awareness of the determining forces of modernity.[111] Modern sociology largely originated from this movement.[112] In 1776, Adam Smith published The Wealth of Nations, which is often considered the first work on modern economics.[113]

19th century

Sketch of a map with captions
The first diagram of an evolutionary tree made by Charles Darwin in 1837

During the nineteenth century, many distinguishing characteristics of contemporary modern science began to take shape. These included the transformation of the life and physical sciences, frequent use of precision instruments, emergence of terms such as "biologist", "physicist", "scientist", increased professionalization of those studying nature, scientists gained cultural authority over many dimensions of society, industrialization of numerous countries, thriving of popular science writings and emergence of science journals.[114] During the late 19th century, psychology emerged as a separate discipline from philosophy when Wilhelm Wundt founded the first laboratory for psychological research in 1879.[115]

During the mid-19th century, Charles Darwin and Alfred Russel Wallace independently proposed the theory of evolution by natural selection in 1858, which explained how different plants and animals originated and evolved. Their theory was set out in detail in Darwin's book On the Origin of Species, published in 1859.[116] Separately, Gregor Mendel presented his paper, "Experiments on Plant Hybridization" in 1865,[117] which outlined the principles of biological inheritance, serving as the basis for modern genetics.[118]

Early in the 19th century,

industrial revolution there was an increased understanding that not all forms of energy have the same energy qualities, the ease of conversion to useful work or to another form of energy.[120] This realization led to the development of the laws of thermodynamics, in which the free energy of the universe is seen as constantly declining: the entropy of a closed universe increases over time.[b]

The

radioactivity by Henri Becquerel and Marie Curie in 1896,[123] Marie Curie then became the first person to win two Nobel prizes.[124] In the next year came the discovery of the first subatomic particle, the electron.[125]

20th century

ozone hole
made in 1987 using data from a space telescope

In the first half of the century, the development of

artificial fertilizers improved human living standards globally.[126][127] Harmful environmental issues such as ozone depletion, ocean acidification, eutrophication and climate change came to the public's attention and caused the onset of environmental studies.[128]

During this period, scientific experimentation became increasingly larger in scale and funding.[129] The extensive technological innovation stimulated by World War I, World War II, and the Cold War led to competitions between global powers, such as the Space Race and nuclear arms race.[130][131] Substantial international collaborations were also made, despite armed conflicts.[132]

In the late 20th century, active recruitment of women and elimination of

sex discrimination greatly increased the number of women scientists, but large gender disparities remained in some fields.[133] The discovery of the cosmic microwave background in 1964[134] led to a rejection of the steady-state model of the universe in favor of the Big Bang theory of Georges Lemaître.[135]

The century saw fundamental changes within science disciplines. Evolution became a unified theory in the early 20th-century when the modern synthesis reconciled Darwinian evolution with classical genetics.[136] Albert Einstein's theory of relativity and the development of quantum mechanics complement classical mechanics to describe physics in extreme length, time and gravity.[137][138] Widespread use of integrated circuits in the last quarter of the 20th century combined with communications satellites led to a revolution in information technology and the rise of the global internet and mobile computing, including smartphones. The need for mass systematization of long, intertwined causal chains and large amounts of data led to the rise of the fields of systems theory and computer-assisted scientific modeling.[139]

21st century

M87* black hole made by separate teams in the Event Horizon Telescope
collaboration.

The Human Genome Project was completed in 2003 by identifying and mapping all of the genes of the human genome.[140] The first induced pluripotent human stem cells were made in 2006, allowing adult cells to be transformed into stem cells and turn to any cell type found in the body.[141] With the affirmation of the Higgs boson discovery in 2013, the last particle predicted by the Standard Model of particle physics was found.[142] In 2015, gravitational waves, predicted by general relativity a century before, were first observed.[143][144] In 2019, the international collaboration Event Horizon Telescope presented the first direct image of a black hole's accretion disk.[145]

Branches

Modern science is commonly divided into three major

empirical sciences,[147] as their knowledge is based on empirical observations and is capable of being tested for its validity by other researchers working under the same conditions.[148]

Natural science

Natural science is the study of the physical world. It can be divided into two main branches: life science and physical science. These two branches may be further divided into more specialized disciplines. For example, physical science can be subdivided into physics, chemistry, astronomy, and earth science. Modern natural science is the successor to the natural philosophy that began in Ancient Greece. Galileo, Descartes, Bacon, and Newton debated the benefits of using approaches which were more mathematical and more experimental in a methodical way. Still, philosophical perspectives, conjectures, and presuppositions, often overlooked, remain necessary in natural science.[149] Systematic data collection, including discovery science, succeeded natural history, which emerged in the 16th century by describing and classifying plants, animals, minerals, and so on.[150] Today, "natural history" suggests observational descriptions aimed at popular audiences.[151]

Social science

Two curve crossing over at a point, forming a X shape
Supply and demand curve in economics, crossing over at the optimal equilibrium

Social science is the study of human behavior and functioning of societies.[4][5] It has many disciplines that include, but are not limited to anthropology, economics, history, human geography, political science, psychology, and sociology.[4] In the social sciences, there are many competing theoretical perspectives, many of which are extended through competing research programs such as the functionalists, conflict theorists, and interactionists in sociology.[4] Due to the limitations of conducting controlled experiments involving large groups of individuals or complex situations, social scientists may adopt other research methods such as the historical method, case studies, and cross-cultural studies. Moreover, if quantitative information is available, social scientists may rely on statistical approaches to better understand social relationships and processes.[4]

Formal science

Applied science

basic sciences, which are focused on advancing scientific theories and laws that explain and predict events in the natural world.[169][170]

Computational science applies computing power to simulate real-world situations, enabling a better understanding of scientific problems than formal mathematics alone can achieve. The use of machine learning and artificial intelligence is becoming a central feature of computational contributions to science for example in agent-based computational economics, random forests, topic modeling and various forms of prediction. However, machines alone rarely advance knowledge as they require human guidance and capacity to reason; and they can introduce bias against certain social groups or sometimes underperform against humans.[171][172]

Interdisciplinary science

Interdisciplinary science involves the combination of two or more disciplines into one,[173] such as bioinformatics, a combination of biology and computer science[174] or cognitive sciences. The concept has existed since the ancient Greek and it became popular again in the 20th century.[175]

Scientific research

Scientific research can be labeled as either basic or applied research.

applied research is the search for solutions to practical problems using this knowledge. Most understanding comes from basic research, though sometimes applied research targets specific practical problems. This leads to technological advances that were not previously imaginable.[176]

Scientific method

6 steps of the scientific method in a loop
A diagram variant of scientific method represented as an ongoing process

Scientific research involves using the

measurements.[178] Statistics is used to summarize and analyze data, which allows scientists to assess the reliability of experimental results.[179]

In the scientific method, an explanatory

falsifiable predictions, which are typically posted before being tested by experimentation. Disproof of a prediction is evidence of progress.[177]: 4–5 [181] Experimentation is especially important in science to help establish causal relationships to avoid the correlation fallacy, though in some sciences such as astronomy or geology, a predicted observation might be more appropriate.[182]

When a hypothesis proves unsatisfactory, it is modified or discarded.

validly reasoned, self-consistent model or framework for describing the behavior of certain natural events. A theory typically describes the behavior of much broader sets of observations than a hypothesis; commonly, a large number of hypotheses can be logically bound together by a single theory. Thus a theory is a hypothesis explaining various other hypotheses. In that vein, theories are formulated according to most of the same scientific principles as hypotheses. Scientists may generate a model, an attempt to describe or depict an observation in terms of a logical, physical or mathematical representation and to generate new hypotheses that can be tested by experimentation.[184]

While performing experiments to test hypotheses, scientists may have a preference for one outcome over another.[185][186] Eliminating the bias can be achieved by transparency, careful experimental design, and a thorough peer review process of the experimental results and conclusions.[187][188] After the results of an experiment are announced or published, it is normal practice for independent researchers to double-check how the research was performed, and to follow up by performing similar experiments to determine how dependable the results might be.[189] Taken in its entirety, the scientific method allows for highly creative problem solving while minimizing the effects of subjective and confirmation bias.[190] Intersubjective verifiability, the ability to reach a consensus and reproduce results, is fundamental to the creation of all scientific knowledge.[191]

Scientific literature

Decorated "NATURE" as title, with scientific text below
Cover of the first issue of Nature, November 4, 1869

Scientific research is published in a range of literature.[192] Scientific journals communicate and document the results of research carried out in universities and various other research institutions, serving as an archival record of science. The first scientific journals, Journal des sçavans followed by Philosophical Transactions, began publication in 1665. Since that time the total number of active periodicals has steadily increased. In 1981, one estimate for the number of scientific and technical journals in publication was 11,500.[193]

Most scientific journals cover a single scientific field and publish the research within that field; the research is normally expressed in the form of a

scientific paper. Science has become so pervasive in modern societies that it is considered necessary to communicate the achievements, news, and ambitions of scientists to a wider population.[194]

Challenges

The

life sciences. In subsequent investigations, the results of many scientific studies are proven to be unrepeatable.[195] The crisis has long-standing roots; the phrase was coined in the early 2010s[196] as part of a growing awareness of the problem. The replication crisis represents an important body of research in metascience, which aims to improve the quality of all scientific research while reducing waste.[197]

An area of study or speculation that masquerades as science in an attempt to claim a legitimacy that it would not otherwise be able to achieve is sometimes referred to as

cargo cult science" for cases in which researchers believe and at a glance looks like they are doing science, but lack the honesty allowing their results to be rigorously evaluated.[200] Various types of commercial advertising, ranging from hype to fraud, may fall into these categories. Science has been described as "the most important tool" for separating valid claims from invalid ones.[201]

There can also be an element of political or ideological bias on all sides of scientific debates. Sometimes, research may be characterized as "bad science," research that may be well-intended but is incorrect, obsolete, incomplete, or over-simplified expositions of scientific ideas. The term "scientific misconduct" refers to situations such as where researchers have intentionally misrepresented their published data or have purposely given credit for a discovery to the wrong person.[202]

Philosophy of science

Depiction of epicycles, where a planet orbit is going around in a bigger orbit
For Kuhn, the addition of epicycles in Ptolemaic astronomy was "normal science" within a paradigm, whereas the Copernican Revolution was a paradigm shift

There are different schools of thought in the

hypothetico-deductive method.[204][203]

Empiricism has stood in contrast to

Descartes, which holds that knowledge is created by the human intellect, not by observation.[205] Critical rationalism is a contrasting 20th-century approach to science, first defined by Austrian-British philosopher Karl Popper. Popper rejected the way that empiricism describes the connection between theory and observation. He claimed that theories are not generated by observation, but that observation is made in the light of theories: that the only way theory A can be affected by observation is after theory A were to conflict with observation, but theory B were to survive the observation.[206]
Popper proposed replacing verifiability with falsifiability as the landmark of scientific theories, replacing induction with falsification as the empirical method.[206] Popper further claimed that there is actually only one universal method, not specific to science: the negative method of criticism, trial and error,[207] covering all products of the human mind, including science, mathematics, philosophy, and art.[208]

Another approach, instrumentalism, emphasizes the utility of theories as instruments for explaining and predicting phenomena. It views scientific theories as black boxes with only their input (initial conditions) and output (predictions) being relevant. Consequences, theoretical entities, and logical structure are claimed to be something that should be ignored.[209] Close to instrumentalism is constructive empiricism, according to which the main criterion for the success of a scientific theory is whether what it says about observable entities is true.[210]

logically consistent "portrait" of the world that is consistent with observations made from its framing. He characterized normal science as the process of observation and "puzzle solving" which takes place within a paradigm, whereas revolutionary science occurs when one paradigm overtakes another in a paradigm shift.[211] Each paradigm has its own distinct questions, aims, and interpretations. The choice between paradigms involves setting two or more "portraits" against the world and deciding which likeness is most promising. A paradigm shift occurs when a significant number of observational anomalies arise in the old paradigm and a new paradigm makes sense of them. That is, the choice of a new paradigm is based on observations, even though those observations are made against the background of the old paradigm. For Kuhn, acceptance or rejection of a paradigm is a social process as much as a logical process. Kuhn's position, however, is not one of relativism.[212]

Finally, another approach often cited in debates of

empirical study and independent verification.[214]

Scientific community

The scientific community is a network of interacting scientists who conducts scientific research. The community consists of smaller groups working in scientific fields. By having peer review, through discussion and debate within journals and conferences, scientists maintain the quality of research methodology and objectivity when interpreting results.[215]

Scientists

Portrait of a middle-aged woman
Marie Curie was the first person to be awarded two Nobel Prizes: Physics in 1903 and Chemistry in 1911[124]

Scientists are individuals who conduct scientific research to advance knowledge in an area of interest.

sectors of the economy such as academia, industry, government, and nonprofit organizations.[219][220][221]

Scientists exhibit a strong curiosity about reality and a desire to apply scientific knowledge for the benefit of health, nations, the environment, or industries. Other motivations include recognition by their peers and prestige. In modern times, many scientists have

industry, government, and nonprofit environments.[222] [223][224]

Science has historically been a male-dominated field, with notable exceptions. Women in science faced considerable discrimination in science, much as they did in other areas of male-dominated societies. For example, women were frequently being passed over for job opportunities and denied credit for their work.[225] The achievements of women in science have been attributed to the defiance of their traditional role as laborers within the domestic sphere.[226]

Learned societies

Picture of scientists in 200th anniversary of the Prussian Academy of Sciences, 1900

professional bodies
, regulating the activities of their members in the public interest, or the collective interest of the membership.

The professionalization of science, begun in the 19th century, was partly enabled by the creation of national distinguished

international cooperation for science advancement.[237]

Awards

Science awards are usually given to individuals or organizations that have made significant contributions to a discipline. They are often given by prestigious institutions, thus it is considered a great honor for a scientist receiving them. Since the early Renaissance, scientists are often awarded medals, money, and titles. The Nobel Prize, a widely regarded prestigious award, is awarded annually to those who have achieved scientific advances in the fields of medicine, physics, and chemistry.[238]

Society

Funding and policies

see caption
Budget of NASA as percentage of United States federal budget, peaking at 4.4% in 1966 and slowly declining since

Scientific research is often funded through a competitive process in which potential research projects are evaluated and only the most promising receive funding. Such processes, which are run by government, corporations, or foundations, allocate scarce funds. Total research funding in most developed countries is between 1.5% and 3% of GDP.[239] In the OECD, around two-thirds of research and development in scientific and technical fields is carried out by industry, and 20% and 10% respectively by universities and government. The government funding proportion in certain fields is higher, and it dominates research in social science and humanities. In the lesser-developed nations, government provides the bulk of the funds for their basic scientific research.[240]

Many governments have dedicated agencies to support scientific research, such as the

Commonwealth Scientific and Industrial Research Organization in Australia,[243] National Centre for Scientific Research in France,[244] the Max Planck Society in Germany,[245] and National Research Council in Spain.[246] In commercial research and development, all but the most research-oriented corporations focus more heavily on near-term commercialization possibilities rather than research driven by curiosity.[247]

capital equipment and intellectual infrastructure for industrial research by providing tax incentives to those organizations that fund research.[194]

Education and awareness

Dinosaur exhibit in the Houston Museum of Natural Science

formal education, the curriculum becomes more in depth. Traditional subjects usually included in the curriculum are natural and formal sciences, although recent movements include social and applied science as well.[249]

The mass media face pressures that can prevent them from accurately depicting competing scientific claims in terms of their credibility within the scientific community as a whole. Determining how much weight to give different sides in a

beat reporters who are knowledgeable about certain scientific issues may be ignorant about other scientific issues that they are suddenly asked to cover.[251][252]

Science magazines such as New Scientist, Science & Vie, and Scientific American cater to the needs of a much wider readership and provide a non-technical summary of popular areas of research, including notable discoveries and advances in certain fields of research.[253] Science fiction genre, primarily speculative fiction, can transmit the ideas and methods of science to the general public.[254] Recent efforts to intensify or develop links between science and non-scientific disciplines, such as literature or poetry, include the Creative Writing Science resource developed through the Royal Literary Fund.[255]

Anti-science attitudes

While the scientific method is broadly accepted in the scientific community, some fractions of society reject certain scientific positions or are skeptical about science. Examples are the common notion that COVID-19 is not a major health threat to the US (held by 39% of Americans in August 2021)[256] or the belief that climate change is not a major threat to the US (also held by 40% of Americans, in late 2019 and early 2020).[257] Psychologists have pointed to four factors driving rejection of scientific results:[258]

Anti-science attitudes seem to be often caused by fear of rejection in social groups. For instance, climate change is perceived as a threat by only 22% of Americans on the right side of the political spectrum, but by 85% on the left.[260] That is, if someone on the left would not consider climate change as a threat, this person may face contempt and be rejected in that social group. In fact, people may rather deny a scientifically accepted fact than lose or jeopardize their social status.[261]

Politics

See also

Notes

  1. ^ Ibn al-Haytham's Book of Optics Book I, [6.54]. pages 372 and 408 disputed Claudius Ptolemy's extramission theory of vision; "Hence, the extramission of [visual] rays is superfluous and useless". —A.Mark Smith's translation of the Latin version of Ibn al-Haytham.[84]: Book I, [6.54]. pp. 372, 408 
  2. ^ Whether the universe is closed or open, or the shape of the universe, is an open question. The 2nd law of thermodynamics,[120]: 9 [121] and the 3rd law of thermodynamics[122] imply the heat death of the universe if the universe is a closed system, but not necessarily for an expanding universe.

References

  1. .
  2. ^ . ...modern science is a discovery as well as an invention. It was a discovery that nature generally acts regularly enough to be described by laws and even by mathematics; and required invention to devise the techniques, abstractions, apparatus, and organization for exhibiting the regularities and securing their law-like descriptions.
  3. ^ from the original on May 5, 2021. Retrieved May 4, 2021.
  4. ^ a b c d e Colander, David C.; Hunt, Elgin F. (2019). "Social science and its methods". Social Science: An Introduction to the Study of Society (17th ed.). New York, NY: Routledge. pp. 1–22.
  5. ^ a b Nisbet, Robert A.; Greenfeld, Liah (October 16, 2020). "Social Science". Encyclopedia Britannica. Encyclopædia Britannica, Inc. Archived from the original on February 2, 2022. Retrieved May 9, 2021.
  6. ^
    S2CID 9272212
    .
  7. ^ from the original on February 26, 2021. Retrieved May 11, 2021.
  8. ^ from the original on December 25, 2020. Retrieved March 24, 2018.
  9. ^ a b Nickles, Thomas (2013). "The Problem of Demarcation". Philosophy of Pseudoscience: Reconsidering the Demarcation Problem. Chicago: The University of Chicago Press. p. 104.
  10. .
  11. ^ .
  12. .
  13. ^ Sinclair, Marius (1993). "On the Differences between the Engineering and Scientific Methods". The International Journal of Engineering Education. Archived from the original on November 15, 2017. Retrieved September 7, 2018.
  14. ^
    S2CID 110332727
    .
  15. ^ .
  16. ^ .
  17. ^ Building Bridges Among the BRICs, p. 125, Robert Crane, Springer, 2014
  18. . The great era of all that is deemed classical in Indian literature, art and science was now dawning. It was this crescendo of creativity and scholarship, as much as ... political achievements of the Guptas, which would make their age so golden.
  19. .
  20. .
  21. .
  22. ^ Sease, Virginia; Schmidt-Brabant, Manfrid. Thinkers, Saints, Heretics: Spiritual Paths of the Middle Ages. 2007. Pages 80-81. Retrieved 6 Oct. 2023
  23. .
  24. .
  25. .
  26. .
  27. .
  28. . The changing character of those engaged in scientific endeavors was matched by a new nomenclature for their endeavors. The most conspicuous marker of this change was the replacement of "natural philosophy" by "natural science". In 1800 few had spoken of the "natural sciences" but by 1880, this expression had overtaken the traditional label "natural philosophy". The persistence of "natural philosophy" in the twentieth century is owing largely to historical references to a past practice (see figure 11). As should now be apparent, this was not simply the substitution of one term by another, but involved the jettisoning of a range of personal qualities relating to the conduct of philosophy and the living of the philosophical life.
  29. from the original on May 5, 2021. Retrieved May 5, 2021.
  30. from the original on May 5, 2021. Retrieved May 5, 2021.
  31. from the original on May 5, 2021. Retrieved May 5, 2021.
  32. .
  33. from the original on August 18, 2021. Retrieved May 5, 2021.
  34. ^ "science". Merriam-Webster Online Dictionary. Merriam-Webster, Inc. Archived from the original on September 1, 2019. Retrieved October 16, 2011.
  35. .
  36. from the original on May 31, 2022. Retrieved May 31, 2022.
  37. .
  38. ^ "scientist". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  39. .
  40. .
  41. ^ Graeber, David; Wengrow, David (2021). The Dawn of Everything. p. 248.
  42. JSTOR 124782
    .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. .
  50. from the original on May 31, 2022. Retrieved January 9, 2020. The Nile occupied an important position in Egyptian culture; it influenced the development of mathematics, geography, and the calendar; Egyptian geometry advanced due to the practice of land measurement "because the overflow of the Nile caused the boundary of each person's land to disappear."
  51. ^ "Telling Time in Ancient Egypt". The Met's Heilbrunn Timeline of Art History. Archived from the original on March 3, 2022. Retrieved May 27, 2022.
  52. ^ from the original on February 5, 2021. Retrieved October 20, 2020.
  53. .
  54. ^ Biggs, R D. (2005). "Medicine, Surgery, and Public Health in Ancient Mesopotamia". Journal of Assyrian Academic Studies. 19 (1): 7–18.
  55. .
  56. . The word φύσις, while first used in connection with a plant in Homer, occurs early in Greek philosophy, and in several senses. Generally, these senses match rather well the current senses in which the English word nature is used, as confirmed by Guthrie, W.K.C. Presocratic Tradition from Parmenides to Democritus (volume 2 of his History of Greek Philosophy), Cambridge UP, 1965.
  57. from the original on May 31, 2022. Retrieved May 30, 2022.
  58. from the original on March 31, 2021. Retrieved October 20, 2020.
  59. ^ from the original on January 29, 2018.
  60. from the original on February 5, 2021. Retrieved October 20, 2020.
  61. from the original on February 5, 2021. Retrieved October 20, 2020.
  62. ^ Lucretius (fl. 1st c. BCE) De rerum natura
  63. Golden Press. Archived
    from the original on February 5, 2021. Retrieved November 18, 2020.
  64. from the original on February 6, 2021. Retrieved October 20, 2020.
  65. ^ Leff, Samuel; Leff, Vera (1956). From Witchcraft to World Health. London, England: Macmillan. Archived from the original on February 5, 2021. Retrieved August 23, 2020.
  66. ^ "Plato, Apology". p. 17. Archived from the original on January 29, 2018. Retrieved November 1, 2017.
  67. ^ "Plato, Apology". p. 27. Archived from the original on January 29, 2018. Retrieved November 1, 2017.
  68. ^ Aristotle. Nicomachean Ethics (H. Rackham ed.). 1139b. Archived from the original on March 17, 2012. Retrieved September 22, 2010.
  69. ^ from the original on February 6, 2021. Retrieved October 20, 2020.
  70. from the original on May 30, 2022. Retrieved May 27, 2022.
  71. from the original on May 30, 2022. Retrieved May 27, 2022.
  72. from the original on February 5, 2021. Retrieved October 20, 2020.
  73. from the original on February 5, 2021. Retrieved October 20, 2020.
  74. from the original on February 6, 2021. Retrieved October 20, 2020.
  75. from the original on March 31, 2021. Retrieved October 20, 2020.
  76. .
  77. from the original on August 21, 2019. Retrieved November 9, 2018.
  78. ^ Wildberg, Christian (May 1, 2018). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Archived from the original on August 22, 2019. Retrieved May 1, 2018 – via Stanford Encyclopedia of Philosophy.
  79. ^ Falcon, Andrea (2019). "Aristotle on Causality". In Zalta, Edward (ed.). Stanford Encyclopedia of Philosophy (Spring 2019 ed.). Metaphysics Research Lab, Stanford University. Archived from the original on October 9, 2020. Retrieved October 3, 2020.
  80. .
  81. .
  82. ^ "Bayt al-Hikmah". Encyclopædia Britannica. Archived from the original on November 4, 2016. Retrieved November 3, 2016.
  83. .
  84. ^ .
  85. . See p. 464: "Schramm sums up [Ibn Al-Haytham's] achievement in the development of scientific method.", p. 465: "Schramm has demonstrated .. beyond any dispute that Ibn al-Haytham is a major figure in the Islamic scientific tradition, particularly in the creation of experimental techniques." p. 465: "only when the influence of Ibn al-Haytham and others on the mainstream of later medieval physical writings has been seriously investigated can Schramm's claim that Ibn al-Haytham was the true founder of modern physics be evaluated."
  86. .
  87. .
  88. JSTOR 26473232. Archived from the original on May 27, 2022. Retrieved May 27, 2022 – via JSTOR
    . Perhaps even as early as 1088 (the date officially set for the founding of the University)
  89. ^ "St. Albertus Magnus | German theologian, scientist, and philosopher". Archived from the original on October 28, 2017. Retrieved October 27, 2017.
  90. from the original on January 20, 2021. Retrieved March 27, 2018.
  91. ^ .
  92. S2CID 118351058. Archived from the original
    (PDF) on April 12, 2020. Retrieved April 12, 2020.
  93. .
  94. .
  95. ^ van Helden, Al (1995). "Pope Urban VIII". The Galileo Project. Archived from the original on November 11, 2016. Retrieved November 3, 2016.
  96. .
  97. .
  98. Harcourt Brace Jovanovich
    .
  99. . Although it was just one of the many factors in the Enlightenment, the success of Newtonian physics in providing a mathematical description of an ordered world clearly played a big part in the flowering of this movement in the eighteenth century
  100. ^ "Gottfried Leibniz – Biography". Maths History. Archived from the original on July 11, 2017. Retrieved March 2, 2021.
  101. from the original on January 19, 2020. Retrieved July 25, 2018.
  102. .
  103. from the original on January 20, 2022. Retrieved May 27, 2022.
  104. ^ "The Scientific Revolution and the Enlightenment (1500–1780)" (PDF). Retrieved January 29, 2024.
  105. ^ "Scientific Revolution | Definition, History, Scientists, Inventions, & Facts". Britannica. Retrieved January 29, 2024.
  106. .
  107. .
  108. .
  109. .
  110. ^ Olby, R.C.; Cantor, G.N.; Christie, J.R.R.; Hodge, M.J.S. (1990). Companion to the History of Modern Science. London: Routledge. p. 265.
  111. ^ Magnusson, Magnus (November 10, 2003). "Review of James Buchan, Capital of the Mind: how Edinburgh Changed the World". New Statesman. Archived from the original on June 6, 2011. Retrieved April 27, 2014.
  112. JSTOR 588406
    .
  113. .
  114. .
  115. .
  116. .
  117. ^ Henig, Robin Marantz (2000). The monk in the garden: the lost and found genius of Gregor Mendel, the father of genetics. pp. 134–138.
  118. ^ Miko, Ilona (2008). "Gregor Mendel's principles of inheritance form the cornerstone of modern genetics. So just what are they?". Nature Education. 1 (1): 134. Archived from the original on July 19, 2019. Retrieved May 9, 2021.
  119. S2CID 141350239
    .
  120. ^ .
  121. .
  122. from the original on January 15, 2019. Retrieved May 29, 2022.
  123. .
  124. ^
    Polski słownik biograficzny, vol. 4
    (in Polish). p. 113.
  125. . Retrieved February 24, 2022.
  126. ^ Goyotte, Dolores (2017). "The Surgical Legacy of World War II. Part II: The age of antibiotics" (PDF). The Surgical Technologist. 109: 257–264. Archived (PDF) from the original on May 5, 2021. Retrieved January 8, 2021.
  127. S2CID 94880859. Archived from the original
    on July 23, 2010. Retrieved October 22, 2010.
  128. on January 21, 2022.
  129. .
  130. .
  131. ^ Kahn, Herman (1962). Thinking about the Unthinkable. Horizon Press.
  132. from the original on July 30, 2022. Retrieved May 31, 2022.
  133. .
  134. (PDF) from the original on January 17, 2011. Retrieved October 4, 2006.
  135. .
  136. from the original on May 31, 2022. Retrieved May 30, 2022.
  137. .
  138. .
  139. .
  140. .
  141. .
  142. ^ O'Luanaigh, C. (March 14, 2013). "New results indicate that new particle is a Higgs boson" (Press release). CERN. Archived from the original on October 20, 2015. Retrieved October 9, 2013.
  143. S2CID 217162243
    .
  144. .
  145. ^ "Media Advisory: First Results from the Event Horizon Telescope to be Presented on April 10th | Event Horizon Telescope". April 20, 2019. Archived from the original on April 20, 2019. Retrieved September 21, 2021.
  146. ^ "Scientific Method: Relationships Among Scientific Paradigms". Seed Magazine. March 7, 2007. Archived from the original on November 1, 2016. Retrieved November 4, 2016.
  147. .
  148. ^ .
  149. from the original on December 25, 2020. Retrieved September 3, 2018.
  150. .
  151. ^ "Natural History". Princeton University WordNet. Archived from the original on March 3, 2012. Retrieved October 21, 2012.
  152. ^ "Formal Sciences: Washington and Lee University". Washington and Lee University. Archived from the original on May 14, 2021. Retrieved May 14, 2021. A "formal science" is an area of study that uses formal systems to generate knowledge such as in Mathematics and Computer Science. Formal sciences are important subjects because all of quantitative science depends on them.
  153. ^ "formal system". Encyclopædia Britannica. Archived from the original on April 29, 2008. Retrieved May 30, 2022.
  154. ^ Tomalin, Marcus (2006). Linguistics and the Formal Sciences.
  155. S2CID 9272212
    .
  156. ^ Bill, Thompson (2007). "2.4 Formal Science and Applied Mathematics". The Nature of Statistical Evidence. Lecture Notes in Statistics. Vol. 189. Springer. p. 15.
  157. .
  158. .
  159. ^ "About the Journal". Journal of Mathematical Physics. Archived from the original on October 3, 2006. Retrieved October 3, 2006.
  160. ISBN 978-0-19-049459-9. Archived from the original
    on June 10, 2021.
  161. ^ "What is mathematical biology". Centre for Mathematical Biology, University of Bath. Archived from the original on September 23, 2018. Retrieved June 7, 2018.
  162. ^ Johnson, Tim (September 1, 2009). "What is financial mathematics?". +Plus Magazine. Archived from the original on April 8, 2022. Retrieved March 1, 2021.
  163. ^ Varian, Hal (1997). "What Use Is Economic Theory?". In D'Autume, A.; Cartelier, J. (eds.). Is Economics Becoming a Hard Science?. Edward Elgar. Pre-publication. Archived June 25, 2006, at the Wayback Machine. Retrieved April 1, 2008.
  164. S2CID 21610124
    .
  165. ^ "Cambridge Dictionary". Cambridge University Press. Archived from the original on August 19, 2019. Retrieved March 25, 2021.
  166. ISSN 0048-7333
    .
  167. .
  168. .
  169. .
  170. .
  171. .
  172. from the original on September 25, 2021. Retrieved September 25, 2021.
  173. .
  174. .
  175. ^ Ausburg, Tanya (2006). Becoming Interdisciplinary: An Introduction to Interdisciplinary Studies (2nd ed.). New York: Kendall/Hunt Publishing.
  176. ^ Dawkins, Richard (May 10, 2006). "To Live at All Is Miracle Enough". RichardDawkins.net. Archived from the original on January 19, 2012. Retrieved February 5, 2012.
  177. ^ . The amazing point is that for the first time since the discovery of mathematics, a method has been introduced, the results of which have an intersubjective value!
  178. .
  179. .
  180. .
  181. .
  182. .
  183. .
  184. .
  185. ^ van Gelder, Tim (1999). ""Heads I win, tails you lose": A Foray Into the Psychology of Philosophy" (PDF). University of Melbourne. Archived from the original (PDF) on April 9, 2008. Retrieved March 28, 2008.
  186. ^ Pease, Craig (September 6, 2006). "Chapter 23. Deliberate bias: Conflict creates bad science". Science for Business, Law and Journalism. Vermont Law School. Archived from the original on June 19, 2010.
  187. OCLC 54989960
    .
  188. .
  189. .
  190. ^ Backer, Patricia Ryaby (October 29, 2004). "What is the scientific method?". San Jose State University. Archived from the original on April 8, 2008. Retrieved March 28, 2008.
  191. .
  192. .
  193. .
  194. ^ a b Bush, Vannevar (July 1945). "Science the Endless Frontier". National Science Foundation. Archived from the original on November 7, 2016. Retrieved November 4, 2016.
  195. PMID 25373639
    .
  196. .
  197. .
  198. ^ Hansson, Sven Ove; Zalta, Edward N. (September 3, 2008). "Science and Pseudoscience". Stanford Encyclopedia of Philosophy. Section 2: The "science" of pseudoscience. Archived from the original on October 29, 2021. Retrieved May 28, 2022.
  199. .
  200. ^ Feynman, Richard (1974). "Cargo Cult Science". Center for Theoretical Neuroscience. Columbia University. Archived from the original on March 4, 2005. Retrieved November 4, 2016.
  201. .
  202. ^ "Coping with fraud" (PDF). The COPE Report 1999: 11–18. Archived from the original (PDF) on September 28, 2007. Retrieved July 21, 2011. It is 10 years, to the month, since Stephen Lock ... Reproduced with kind permission of the Editor, The Lancet.
  203. ^ .
  204. .
  205. .
  206. ^ .
  207. .
  208. ^ Popper, Karl (1972). Objective Knowledge.
  209. .
  210. ^ Votsis, I. (2004). The Epistemological Status of Scientific Theories: An Investigation of the Structural Realist Account (PhD Thesis). University of London, London School of Economics. p. 39.
  211. ^ Bird, Alexander (2013). Zalta, Edward N. (ed.). "Thomas Kuhn". Stanford Encyclopedia of Philosophy. Archived from the original on July 15, 2020. Retrieved October 26, 2015.
  212. from the original on October 19, 2021. Retrieved May 30, 2022.
  213. .
  214. ^ Brugger, E. Christian (2004). "Casebeer, William D. Natural Ethical Facts: Evolution, Connectionism, and Moral Cognition". The Review of Metaphysics. 58 (2).
  215. (PDF) from the original on April 8, 2016. Retrieved May 26, 2022.
  216. ^ "Eusocial climbers" (PDF). E.O. Wilson Foundation. Archived (PDF) from the original on April 27, 2019. Retrieved September 3, 2018. But he's not a scientist, he's never done scientific research. My definition of a scientist is that you can complete the following sentence: 'he or she has shown that...'," Wilson says.
  217. ^ "Our definition of a scientist". Science Council. Archived from the original on August 23, 2019. Retrieved September 7, 2018. A scientist is someone who systematically gathers and uses research and evidence, making a hypothesis and testing it, to gain and share understanding and knowledge.
  218. PMID 21512548
    .
  219. .
  220. .
  221. .
  222. .
  223. .
  224. .
  225. ^ Whaley, Leigh Ann (2003). Women's History as Scientists. Santa Barbara, California: ABC-CLIO, INC.
  226. .
  227. ^ Parrott, Jim (August 9, 2007). "Chronicle for Societies Founded from 1323 to 1599". Scholarly Societies Project. Archived from the original on January 6, 2014. Retrieved September 11, 2007.
  228. ^ "The Environmental Studies Association of Canada – What is a Learned Society?". Archived from the original on May 29, 2013. Retrieved May 10, 2013.
  229. ^ "Learned societies & academies". Archived from the original on June 3, 2014. Retrieved May 10, 2013.
  230. ^ "Learned Societies, the key to realising an open access future?". Impact of Social Sciences. London School of Economics. June 24, 2019. Retrieved January 22, 2023.
  231. ^ "Accademia Nazionale dei Lincei" (in Italian). 2006. Archived from the original on February 28, 2010. Retrieved September 11, 2007.
  232. ^ "Prince of Wales opens Royal Society's refurbished building". The Royal Society. July 7, 2004. Archived from the original on April 9, 2015. Retrieved December 7, 2009.
  233. ^ Meynell, G.G. "The French Academy of Sciences, 1666–91: A reassessment of the French Académie royale des sciences under Colbert (1666–83) and Louvois (1683–91)". Archived from the original on January 18, 2012. Retrieved October 13, 2011.
  234. ^ ITS. "Founding of the National Academy of Sciences". .nationalacademies.org. Archived from the original on February 3, 2013. Retrieved March 12, 2012.
  235. ^ "The founding of the Kaiser Wilhelm Society (1911)". Max-Planck-Gesellschaft. Archived from the original on March 2, 2022. Retrieved May 30, 2022.
  236. ^ "Introduction". Chinese Academy of Sciences. Archived from the original on March 31, 2022. Retrieved May 31, 2022.
  237. ^ "Two main Science Councils merge to address complex global challenges". UNESCO. July 5, 2018. Archived from the original on July 12, 2021. Retrieved October 21, 2018.
  238. ^ Stockton, Nick (October 7, 2014). "How did the Nobel Prize become the biggest award on Earth?". Wired. Archived from the original on June 19, 2019. Retrieved September 3, 2018.
  239. ^ "Main Science and Technology Indicators – 2008-1" (PDF). OECD. Archived from the original (PDF) on February 15, 2010.
  240. from the original on May 25, 2022. Retrieved May 28, 2022 – via oecd-ilibrary.org.
  241. .
  242. ^ "Argentina, National Scientific and Technological Research Council (CONICET)". International Science Council. Archived from the original on May 16, 2022. Retrieved May 31, 2022.
  243. from the original on May 7, 2021. Retrieved May 31, 2022.
  244. ^ "Le CNRS recherche 10.000 passionnés du blob". Le Figaro (in French). October 20, 2021. Archived from the original on April 27, 2022. Retrieved May 31, 2022.
  245. from the original on May 29, 2022. Retrieved May 31, 2022.
  246. ^ "En espera de una "revolucionaria" noticia sobre Sagitario A*, el agujero negro supermasivo en el corazón de nuestra galaxia". ELMUNDO (in Spanish). May 12, 2022. Archived from the original on May 13, 2022. Retrieved May 31, 2022.
  247. PMID 23028299
    .
  248. .
  249. .
  250. ^ Dickson, David (October 11, 2004). "Science journalism must keep a critical edge". Science and Development Network. Archived from the original on June 21, 2010.
  251. ^ Mooney, Chris (November–December 2004). "Blinded By Science, How 'Balanced' Coverage Lets the Scientific Fringe Hijack Reality". Columbia Journalism Review. Vol. 43, no. 4. Archived from the original on January 17, 2010. Retrieved February 20, 2008.
  252. ^ McIlwaine, S.; Nguyen, D.A. (2005). "Are Journalism Students Equipped to Write About Science?". Australian Studies in Journalism. 14: 41–60. Archived from the original on August 1, 2008. Retrieved February 20, 2008.
  253. PMID 24312943
    .
  254. ^ Wilde, Fran (January 21, 2016). "How Do You Like Your Science Fiction? Ten Authors Weigh In On 'Hard' vs. 'Soft' SF". Tor.com. Archived from the original on April 4, 2019. Retrieved April 4, 2019.
  255. ^ Petrucci, Mario. "Creative Writing – Science". Archived from the original on January 6, 2009. Retrieved April 27, 2008.
  256. ^ Tyson, Alec; Funk, Cary; Kennedy, Brian; Johnson, Courtney (September 15, 2021). "Majority in U.S. Says Public Health Benefits of COVID-19 Restrictions Worth the Costs, Even as Large Shares Also See Downsides". Pew Research Center Science & Society. Retrieved August 4, 2022.
  257. ^ Kennedy, Brian. "U.S. concern about climate change is rising, but mainly among Democrats". Pew Research Center. Retrieved August 4, 2022.
  258. PMID 35858405
    .
  259. .
  260. ^ Poushter, Jacob; Fagan, Moira; Gubbala, Sneha (August 31, 2022). "Climate Change Remains Top Global Threat Across 19-Country Survey". Pew Research Center's Global Attitudes Project. Retrieved September 5, 2022.
  261. .
  262. ^ McGreal, Chris (October 26, 2021). "Revealed: 60% of Americans say oil firms are to blame for the climate crisis". The Guardian. Archived from the original on October 26, 2021. Source: Guardian/Vice/CCN/YouGov poll. Note: ±4% margin of error.
  263. ^ Goldberg, Jeanne (2017). "The Politicization of Scientific Issues: Looking through Galileo's Lens or through the Imaginary Looking Glass". Skeptical Inquirer. 41 (5): 34–39. Archived from the original on August 16, 2018. Retrieved August 16, 2018.
  264. Druckman, James N.
    (2015). "Counteracting the Politicization of Science". Journal of Communication (65): 746.
  265. ^ (PDF) from the original on November 26, 2020. Retrieved April 12, 2020.
  266. (PDF) from the original on April 4, 2020. Retrieved August 25, 2019.

External links