Science and technology of the Han dynasty

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

A gilded bronze oil lamp in the shape of a female servant, dated 2nd century BCE, found in the tomb of Dou Wan, wife to the Han prince Liu Sheng (d. 113 BCE); its sliding shutter allows for adjustments in the direction and brightness of light while it also traps smoke within the body, an anti-pollutant design.[1]

The Han dynasty (206 BCE – 220 CE) of early imperial China, divided between the eras of Western Han (206 BCE – 9 CE, when the capital was at Chang'an), the Xin dynasty of Wang Mang (r. 9–23 CE), and Eastern Han (25–220 CE, when the capital was at Luoyang, and after 196 CE at Xuchang), witnessed some of the most significant advancements in premodern Chinese science and technology.

There were great innovations in

waterwheel-powered bellows; the resulting widespread distribution of iron tools facilitated the growth of agriculture. For tilling the soil and planting straight rows of crops, the improved heavy-moldboard plough with three iron plowshares and sturdy multiple-tube iron seed drill were invented in the Han, which greatly enhanced production yields and thus sustained population growth. The method of supplying irrigation ditches with water was improved with the invention of the mechanical chain pump powered by the rotation of a waterwheel or draft animals, which could transport irrigation water up elevated terrains. The waterwheel was also used for operating trip hammers in pounding grain and in rotating the metal rings of the mechanical-driven astronomical armillary sphere representing the celestial sphere
around the Earth.

The quality of life was improved with many Han inventions. The Han Chinese had hempen-bound bamboo scrolls to write on, yet by the 2nd century CE had invented the

Horner scheme, improved calculations of pi, and negative numbers. Hundreds of new roads and canals were built to facilitate transport, commerce, tax collection, communication, and movement of military troops. The Han-era Chinese also employed several types of bridges to cross waterways and deep gorges, such as beam bridges, arch bridges, simple suspension bridges, and pontoon bridges. Han ruins of defensive city walls made of brick or rammed earth
still stand today.

Modern perspectives

Jin Guantao, a professor of the Institute of Chinese Studies at the

scientific and technological growth during the Song dynasty (960–1279). However, they also argue that without the influence of proto-scientific precepts in the ancient philosophy of Mohism, Chinese science continued to lack a definitive structure:[2]

From the middle and late Eastern Han to the early Wei and Jin dynasties, the net growth of ancient Chinese science and technology experienced a peak (second only to that of the Northern Song dynasty) ...Han studies of the Confucian classics, which for a long time had hindered the socialization of science, were declining. If Mohism, rich in scientific thought, had rapidly grown and strengthened, the situation might have been very favorable to the development of a scientific structure. However, this did not happen because the seeds of the primitive structure of science were never formed. During the late Eastern Han, disastrous upheavals again occurred in the process of social transformation, leading to the greatest social disorder in Chinese history. One can imagine the effect of this calamity on science.[2]

Joseph Needham (1900–1995), a late Professor from the University of Cambridge and author of the groundbreaking Science and Civilisation in China series, stated that the "Han time (especially the Later Han) was one of the relatively important periods as regards the history of science in China."[3] He noted the advancements during Han of astronomy and calendrical sciences, the "beginnings of systematic botany and zoology", as well as the philosophical skepticism and rationalist thought embodied in Han works such as the Lunheng by the philosopher Wang Chong (27–100 CE).[3]

Writing materials

An unfolded traditional bamboo scroll book (Chinese: ) of Sunzi's (fl. 6th century BCE) The Art of War, a Qing dynasty copy from the reign of the Qianlong Emperor (r. 1736–1795)

The most common writing mediums found in archaeological digs from ancient sites predating the Han period are

written characters on these narrow flat strips of bamboo were arranged into vertical columns.[7]

While

wrapping paper.[9] The papermaking process was not formally introduced until the Eastern Han court eunuch Cai Lun (50–121 CE) created a process in 105 where mulberry tree bark, hemp, old linens, and fish nets were boiled together to make a pulp that was pounded, stirred in water, and then dunked with a wooden sieve containing a reed mat that was shaken, dried, and bleached into sheets of paper.[10] The oldest known piece of paper with writing on it comes from the ruins of a Chinese watchtower at Tsakhortei, Alxa League, Inner Mongolia, dated precisely to 110 CE when the Han garrison abandoned the area following a nomadic Xiongnu attack.[11] By the 3rd century, paper became one of China's chief writing mediums.[12]

Ceramics

A painted pottery jar from the Western Han period, decorated with raised reliefs of dragons and phoenixes
An Eastern-Han celadon ceramic bottle with a lid and lug handles

The Han ceramics industry was upheld by private businesses as well as local government agencies.[13] Ceramics were used in domestic wares and utensils as well as construction materials for roof tiles and bricks.[14]

Han dynasty grey pottery—its color derived from the clay that was used—was superior to earlier Chinese grey pottery due to the Han people's use of larger kiln chambers, longer firing tunnels, and improved chimney designs.[15] Kilns of the Han dynasty making grey pottery were able to reach firing temperatures above 1,000 °C (1,830 °F).[15] However, hard southern Chinese pottery made from a dense adhesive clay native only in the south (i.e. Guangdong, Guangxi, Hunan, Jiangxi, Fujian, Zhejiang, and southern Jiangsu) was fired at even higher temperatures than grey pottery during the Han.[15] Glazed pottery of the Shang (c. 1600 – c. 1050 BCE) and Zhou (c. 1050 – 256 BCE) dynasties were fired at high temperatures, but by the mid Western Han (206 BCE – 9 CE), a brown-glazed ceramic was made which was fired at the low temperature of 800 °C (1,470 °F), followed by a green-glazed ceramic which became popular in the Eastern Han (25–220 CE).[16]

Wang Zhongshu states that the light-green stoneware known as celadon was thought to exist only since the Three Kingdoms period (220–265 CE) onwards, but argues that ceramic shards found at Eastern Han (25–220 CE) sites of Zhejiang province can be classified as celadon.[17] However, Richard Dewar argues that true celadon was not created in China until the early Song dynasty (960–1279) when Chinese kilns were able to reach a minimum furnace temperature of 1,260 °C (2,300 °F), with a preferred range of 1,285 to 1,305 °C (2,345 to 2,381 °F) for celadon.[18]

Metallurgy

Furnaces and smelting techniques

iron dagger
from the Han period

A blast furnace converts raw iron oxide into iron, which can be remelted in a cupola furnace to produce cast iron. The earliest specimens of cast iron found in China date to the 5th century BCE during the late Spring and Autumn period, yet the oldest discovered blast furnaces date to the 3rd century BCE and the majority date to the period after Emperor Wu of Han (r. 141–87 BCE) established a government monopoly over the iron industry in 117 BCE (most of the discovered iron works sites built before this date were merely foundries which recast iron that had been smelted elsewhere).[19] Iron ore smelted in blast furnaces during the Han was rarely if ever cast directly into permanent molds; instead, the pig iron scraps were remelted in the cupola furnace to make cast iron.[20] Cupola furnaces utilized a cold blast traveling through tuyere pipes from the bottom and over the top where the charge of charcoal and pig iron was introduced.[20] The air traveling through the tuyere pipes thus became a hot blast once it reached the bottom of the furnace.[20]

Although Chinese civilization lacked the bloomery, the Han Chinese were able to make wrought iron when they injected too much oxygen into the cupola furnace, causing decarburization.[21] The Han-era Chinese were also able to convert cast iron and pig iron into wrought iron and steel by using the finery forge and puddling process, the earliest specimens of such dating to the 2nd century BCE and found at Tieshengguo near Mount Song of Henan province.[22] The semisubterranean walls of these furnaces were lined with refractory bricks and had bottoms made of refractory clay.[23] Besides charcoal made of wood, Wang Zhongshu states that another furnace fuel used during the Han were "coal cakes", a mixture of coal powder, clay, and quartz.[24]

Use of steel, iron, and bronze

A Western-Han bronze tripod oil lamp, 1st century BCE

Donald B. Wagner writes that most domestic iron tools and implements produced during the Han were made of cheaper and more brittle cast iron, whereas

stonemasons, and rammed earth builders had at their disposal iron tools such as the plowshare, pickaxe, spade, shovel, hoe, sickle, axe, adze, hammer, chisel, knife, saw, scratch awl, and nails.[28] Common iron commodities found in Han dynasty homes included tripods, stoves, cooking pots, belt buckles, tweezers, fire tongs, scissors, kitchen knives, fish hooks, and needles.[27] Mirrors and oil lamps were often made of either bronze or iron.[29] Coin money minted during the Han was made of either copper or copper and tin smelted together to make the bronze alloy.[30]

Agriculture

Tools and methods

A Han-dynasty iron plowshare

Modern archaeologists have unearthed Han iron farming tools throughout China, from

water wells, artificial ponds and embankments, dams, canals, and sluice gates.[35]

Alternating fields

During Emperor Wu's (r. 141–87 BCE) reign, the Grain Intendant Zhao Guo (Chinese: 趙過) invented the alternating fields system (daitianfa 代田法).[36] For every mou of land—i.e. a thin but elongated strip of land measuring 1.38 m (4.5 ft) wide and 331 m (1,086 ft) long, or an area of roughly 457 m2 (0.113 acres)[37][38]—three low-lying furrows (quan 甽) that were each 0.23 m (0.75 ft) wide were sowed in straight lines with crop seed.[36] While weeding in the summer, the loose soil of the ridges (long 壟) on either side of the furrows would gradually fall into the furrows, covering the sprouting crops and protecting them from wind and drought.[36] Since the position of the furrows and ridges were reversed by the next year, this process was called the alternating fields system.[36]

This system allowed crops to grow in straight lines from sowing to harvest, conserved moisture in the soil, and provided a stable annual yield for harvested crops.

district, and hamlet in their commanderies.[39] Sadao Nishijima speculates that the Imperial Counselor Sang Hongyang (d. 80 BCE) perhaps had a role in promoting this new system.[40]

Rich families who owned oxen and large heavy moldboard iron plows greatly benefited from this new system.[41] However, poorer farmers who did not own oxen resorted to using teams of men to move a single plow, which was exhausting work.[41] The author Cui Shi (Chinese: 催寔) (d. 170 CE) wrote in his Simin yueling (Chinese: 四民月令) that by the Eastern Han Era (25–220 CE) an improved plow was invented which needed only one man to control it, two oxen to pull it, had three plowshares, a seed box for the drills, a tool which turned down the soil, and could sow roughly 45,730 m2 (11.30 acres) of land in a single day.[42]

Pit fields

During the reign of Emperor Cheng of Han (r. 33–37 BCE), Fan Shengzhi wrote a manual (i.e. the Fan Shengzhi shu) which described the pit field system (aotian 凹田).[43][44] In this system, every mou of farmland was divided into 3,840 grids which each had a small pit that was dug 13.8 cm (5.4 in) deep and 13.8 cm (5.4 in) wide and had good quality manure mixed into the soil.[43] Twenty seeds were sowed into each pit, which allegedly produced 0.6 L (20 oz) of harvested grain per pit, or roughly 2,000 L (67,630 oz) per mou.[43] This system did not require oxen-driven plows or the most fertile land, since it could be employed even on sloping terrains where supplying water was difficult for other methods of farming.[45] Although this farming method was favored by the poor, it did require intensive labor, thus only large families could maintain such a system.[46]

Rice paddies

An Eastern-Han pottery model of a rice paddy field with farmers

Han farmers in the

Yangzi River region of southern China often maintained paddy fields for growing rice. Every year, they would burn the weeds in the paddy field, drench it in water, sow rice by hand, and around harvest time cut the surviving weeds and drown them a second time.[47] In this system, the field lays fallow for much of the year and thus did not remain very fertile.[47] However, Han rice farmers to the north around the Huai River practiced the more advanced system of transplantation.[48] In this system, individual plants were given intensive care (perhaps in the same location as the paddy field), their offshoots separated so that more water could be conserved, and the field could be heavily fertilized since winter crops were grown while the rice seedlings were situated nearby in a plant nursery.[48]

Mechanical and hydraulic engineering

Literary sources and archaeological evidence

Two types of hydraulic-powered chain pumps from an encyclopedia written in 1637 by Song Yingxing

Evidence of Han-era mechanical engineering comes largely from the choice observational writings of sometimes disinterested Confucian scholars. Professional artisan-engineers (jiang Chinese: ) did not leave behind detailed records of their work.[49] Han scholars, who often had little or no expertise in mechanical engineering, sometimes provided insufficient information on the various technologies they described.[50]

Nevertheless, some Han literary sources provide crucial information. As written by Yang Xiong in 15 BCE, the

later technologies during the Song dynasty, such as the chain drive and spinning wheel.[51]

The inventions of the artisan and mechanical engineer Ding Huan (

rotary fan which had rotating wheels that were 3 m (9.8 ft) in diameter.[55] He also invented a lamp which he called the 'nine-storied hill-censer', since it was shaped as a hillside.[56] When the cylindrical lamp was lit, the convection of rising hot air currents caused vanes placed on the top to spin, which in turn rotated painted paper figures of birds and other animals around the lamp.[56]

When Emperor Gaozu of Han (r. 202–195 BCE) came upon the treasury of Qin Shi Huang (r. 221–210) at Xianyang following the downfall of the Qin dynasty (221–206), he found an entire miniature musical orchestra of puppets 1 m (3.3 ft) tall who played mouth organs if one pulled on ropes and blew into tubes to control them.[57] Zhang Heng wrote in the 2nd century CE that people could be entertained by theatrical plays of artificial fish and dragons.[57] Later, the inventor Ma Jun (fl. 220–265) invented a theater of moving mechanical puppets powered by the rotation of a hidden waterwheel.[57]

From literary sources it is known that the collapsible umbrella was invented during Wang Mang's reign, although the simple parasol existed beforehand. This employed sliding levers and bendable joints that could be protracted and retracted.[58]

Modern archaeology has led to the discovery of Han artwork portraying inventions which were otherwise absent in Han literary sources. This includes the

caliper to make minute measurements. Although Han-era calipers bear incised inscriptions of the exact day of the year they were manufactured, they are not mentioned in any Han literary sources.[62]

Uses of the waterwheel and water clock

By the Han dynasty, the Chinese developed various uses for the

waterwheel. An improvement of the simple lever-and-fulcrum tilt hammer device operated by one's foot, the hydraulic-powered trip hammer used for pounding, decorticating, and polishing grain was first mentioned in the Han dictionary Jijiupian of 40 BCE.[63] It was also mentioned in the Regional Speech (Fangyan) dictionary written by Yang Xiong (53 BCE – 18 CE) in 15 BCE, the philosophical Xinlun 新論 written by Huan Tan (43 BCE – 28 CE) in 20 CE, the poetry of Ma Rong (79–166 CE), and the writings of Kong Rong (153–208 CE).[63]

In his

its palaces with clean water.[66]

While acting as administrator of Nanyang in 31 CE, Du Shi (d. 38) invented a water-powered reciprocator which worked the bellows of the blast furnace and cupola furnace in smelting iron; before this invention, intensive manual labor was required to work the bellows.[67]

Although the astronomical armillary sphere (representing the celestial sphere) had existed in China since the 1st century BCE, the mathematician and court astronomer Zhang Heng (78–139 CE) provided it with motive power by using the constant pressure head of an inflow water clock to rotate a waterwheel that acted on a set of gears.[68] Zhang Heng was also the first to address the problem of the falling pressure head in the inflow water clock (which gradually slowed the timekeeping) by setting up an additional tank between the reservoir and inflow vessel.[69]

Seismometer

A modern replica of Zhang Heng's seismometer of 132

The Han court was responsible for the major efforts of disaster relief when natural disasters such as earthquakes devastated the lives of commoners.[70] To better prepare for calamities, Zhang Heng invented a seismometer in 132 CE, which provided instant alert to authorities in the capital Luoyang that an earthquake had occurred in a location indicated by a specific cardinal or ordinal direction.[71] Although no tremors could be felt in the capital when Zhang told the court that an earthquake had just occurred in the northwest, a message came soon afterwards that an earthquake had indeed struck 400 to 500 km (250 to 310 mi) northwest of Luoyang (in what is now modern Gansu).[72] Zhang called his device the 'instrument for measuring the seasonal winds and the movements of the Earth' (Houfeng didong yi 候风地动仪), so-named because he and others thought that earthquakes were most likely caused by the enormous compression of trapped air.[73]

As described in the Book of the Later Han, the frame of the seismometer was a domed bronze vessel in the shape of a wine jar, although it was 1.8 m (5.9 ft) in diameter and decorated with scenes of mountains and animals.[74] The trigger mechanism was an inverted pendulum (which the Book of the Later Han calls the "central column") that, if disturbed by the ground tremors of earthquakes located near or far away, would swing and strike one of eight mobile arms (representing the eight directions), each with a crank and catch mechanism.[75] The crank and a right angle lever would raise one of eight metal dragon heads located on the exterior, dislodging a metal ball from its mouth that dropped into the mouth of one of eight metal toads below arranged like the points on a compass rose, thus indicating the direction of the earthquake.[75] The Book of the Later Han states that when the ball fell into any one of eight toad mouths, it produced a loud noise which gained the attention of those observing the device.[76] While Wang Zhenduo (Chinese: 王振铎) accepted the idea that Zhang's seismometer had cranks and levers which were disturbed by the inverted pendulum, his contemporary Akitsune Imamura (1870–1948) argued that the inverted pendulum could have had a pin at the top which, upon moving by force of the ground vibrations, would enter one of eight slots and expel the ball by pushing a slider.[77] Since the Book of the Later Han states that the other seven dragon heads would not subsequently release the balls lodged up into their jaws after the first one had dropped, Imamura asserted that the pin of the pendulum would have been locked into the slot it had entered and thus immobilized the instrument until it was reset.[75]

Mathematics and astronomy

Mathematical treatises

Nine Chapters on the Mathematical Art

One of the earliest surviving mathematical treatises of ancient China is the

Nine Chapters on the Mathematical Art (Jiuzhang Suanshu); its full title was found on two bronze standard measurers dated 179 CE (with speculation that its material existed in earlier books under different titles) and was provided with detailed commentary by Liu Hui (fl. 3rd century) in 263.[81] It is worth noting in this context that many of the documents excavated from Qin and Han sites contain evidence of the practical mathematics used by administrators for inventories and taxes, as well as for calculating labor needed for public works projects, just as described in the mathematical treatises.[82]

Innovations in the treatises

The Suan shu shu presents basic mathematics problems and solutions. It was most likely a handbook for day-to-day business transactions or affairs of government administration.[83] It contains problems and solutions for field measurements of area, proportional exchange rates for agricultural millet and rice, distribution by proportion, short width division, and excess and deficiency.[84] Some of the problems found in the Suan shu shu appear in the later text Jiuzhang suanshu; in five cases, the titles are exact matches.[84] However, unlike the Jiuzhang suanshu, the Suan shu shu does not deal with problems involving right-angle triangles, square roots, cube roots, and matrix methods, which demonstrates the significant advancements made in Chinese mathematics between the writings of these two texts.[85]

Mathematical proof for the Pythagorean theorem (Chinese: 勾股定理) as seen in the treatise Zhoubi Suanjing compiled during the Han dynasty

The Zhoubi suanjing, written in dialogue form and with regularly presented problems, is concerned with the application of mathematics to astronomy. In one problem which sought to determine the height of the Sun from the Earth and the diameter of the Sun, Chen Zi (Chinese: 陳子) instructs Rong Fang (Chinese: 榮方) to wait until the shadow cast by the 8 chi tall gnomon is 6 chi (one chi during the Han was 33 cm), so that a 3-4-5 right-angle triangle can be constructed where the base is 60,000 li (one li during the Han was the equivalent of 415 m or 1362 ft), the hypotenuse leading towards the sun is 100,000 li, and the height of the sun is 80,000 li.[86] Like the Jiuzhang suanshu, the Zhoubi suanjing also gives mathematical proof for the "Gougu Theorem" (Chinese: 勾股定理; i.e. where c is the length of the hypotenuse and a and b are the lengths of the other two sides, respectively, a2 + b2 = c2), which is known as the Pythagorean theorem in the West after the Greek mathematician Pythagoras (fl. 6th century BCE).[87]

The Jiuzhang suanshu was perhaps the most groundbreaking of the three surviving Han treatises. It is the first known book to feature

Horner scheme named after William George Horner (1786–1837).[92]

Approximations of pi

For centuries, the Chinese had simply approximated the value of

Liu Hui approximated pi as 3.14159, while the mathematician Zu Chongzhi (429–500) approximated pi at 3.141592 (or 355113), the most accurate approximation the ancient Chinese would achieve.[98]

Musical tuning and theory

Mathematics were also used in

Mercator's comma).[100] Later, the prince Zhu Zaiyu (1536–1611) in Ming China and Simon Stevin (1548–1620) of the Flemish Region in Europe would simultaneously (but separately) discover the mathematical formula for equal temperament.[101]

Astronomical observations

Halley's comet
in 12 BCE, seen here in its 1986 reappearance.

The ancient Chinese made careful observations of heavenly bodies and phenomena since observations of the cosmos were used for astrology and prognostication.[102] The astronomer Gan De (fl. 4th century BCE) from the State of Qi was the first in history to acknowledge sunspots as genuine solar phenomena (and not obstructing natural satellites as thought in the West after Einhard's observation in 807), while the first precisely dated sunspot observation in China occurred on May 10, 28 BCE, during the reign of Emperor Cheng of Han (r. 33–7 BCE).[103] Among the Mawangdui Silk Texts dated no later than 168 BCE (when they were sealed in a tomb at Mawangdui Han tombs site, Changsha, Hunan province), the Miscellaneous Readings of Cosmic Patterns and Pneuma Images (Tianwen qixiang zazhan 天文氣象雜占) manuscript illustrates in writings and ink drawings roughly 300 different climatic and astronomical features, including clouds, mirages, rainbows, stars, constellations, and comets.[104] Another silk text from the same site reports the times and locations of the rising and setting of planets in the night sky from the years 246–177 BCE.[105]

The Han-era Chinese noted the passage of the same comet seen in

Halley's comet in 12 BCE, the same comet noted by Roman historian Cassius Dio (c. 155 – c. 229 CE) for 13 CE, and (what is now known to have been) a supernova in AD 185.[106] For various comets discussed in the Han-era history books Records of the Grand Historian and Book of Han, details are given for their position in the sky and direction they were moving, the length of time they were visible, their color, and their size.[107]

The Han-era Chinese also made

Han calendars

Han-dynasty paintings on tile; being conscious of time, the Chinese believed in guardian spirits for the divisions of day and night, such as these two guardians here representing 11 pm to 1 am (left) and 5 am to 7 am (right).

The Han Chinese used astronomical studies mainly to construct and revise their

celestial stems (gan 干) and Earthly Branches (zhi 支), each of the latter associated with an animal of the Chinese zodiac.[115]

Astronomical theory

Zhao Shaung's 3rd-century commentary in the Zhoubi suanjing describes two astronomical theories: in one, the heavens are shaped as a hemi-spherical dome extending over the Earth, while the other compares the Earth to the central

yolk of an egg, where the heavens are shaped as a celestial sphere around the earth.[80] The latter astronomical theory was mentioned by Yang Xiong in his Model Sayings (Fayan 法言) and expounded on by Zhang Heng in his Spiritual Constitution of the Universe (Lingxian 靈憲) of 120 CE.[116] Thus, the Han-era Chinese believed in a geocentric model for the immediate Solar System and greater universe, as opposed to a heliocentric model
.

The Han-era Chinese discussed the illumination and shapes of heavenly bodies: were they flat and circular, or were they rounded and spherical? Jing Fang wrote in the 1st century BCE that Han astronomers believed the Sun, Moon, and planets were spherical like balls or crossbow bullets.[117] He also wrote that the Moon and planets produce no light of their own, are viewable to people on Earth only because they are illuminated by the Sun, and those parts not illuminated by the Sun would be dark on the other side.[117] For this, Jing compared the Moon to a mirror illuminating light.[117] In the 2nd century CE, Zhang Heng drew a similar comparison to Jing's by stating that the Sun is like fire and the Moon and planets are like water, since fire produces light and water reflects it.[118] He also repeated Jing's comment that the side of the Moon not illuminated by the Sun was left in darkness.[118] However, Zhang noted that sunlight did not always reach the Moon since the Earth obstructs the rays during a lunar eclipse.[118] He also noted that a solar eclipse occurred when the Moon and Sun crossed paths to block sunlight from reaching earth.[118]

In his Balanced Discourse (Lunheng), Wang Chong (27–100 CE) wrote that some Han thinkers believed that rain fell from the Heavens (i.e. where the stars were located).[119] Wang argued that, although rain fell from above, this common theory was false.[119] He agreed with another theory that stated clouds were formed by the evaporation of water on Earth, and that since clouds disperse rain, clouds and rain are in fact one and the same; in essence, he accurately described the water cycle.[119]

Structural engineering and public works

Materials and construction

crenellations.[124] Han walls of frontier towns and forts in Inner Mongolia were typically constructed with stamped clay bricks instead of rammed earth.[125]

Thatched or tiled roofs were supported by wooden pillars, since the addition of brick, rammed earth, or mud walls of these halls did not actually support the roof.[120] Stone and plaster were also used for domestic architecture.[120] Tiled eaves projecting outward were built to distance falling rainwater from the walls; they were supported by dougong brackets that were sometimes elaborately decorated.[120] Molded designs usually decorated the ends of roof tiles, as seen in artistic models of buildings and in surviving tile pieces.[126]

Courtyard homes

Valuable clues about Han architecture can be found in Han artwork of ceramic models, paintings, and carved or stamped bricks discovered in tombs and other sites.[120] The layout of Han tombs were also built like underground houses, comparable to the scenes of courtyard houses found on tomb bricks and in three-dimensional models.[120] Han homes had a courtyard area (and some had multiple courtyards) with halls that were slightly elevated above it and connected by stairways.[120] Multi-story buildings included the main colonnaded residence halls built around the courtyards as well as watchtowers.[120] The halls were built with intersecting crossbeams and rafters that were usually carved with decorations; stairways and walls were usually plastered over to produce a smooth surface and then painted.[127]

Chang'an and Luoyang, the Han capitals

The ruins of the walls of Han's first capital

water pipes have been found that once connected to the ditches built alongside the major streets.[131] Only some wall sections and platform foundations of the city's once lavish imperial palaces remain.[132] Likewise, the stone foundations of the armory were also discovered, but its wooden architecture had long since disappeared.[132]

Some sections of the wall ruins of Han's second capital Luoyang still stand at 10 m (33 ft) in height and 25 m (82 ft) in width at the base.[133] The eastern wall was 3,900 m (12,800 ft) long, the western wall was 3,400 m (11,200 ft) long, and the northern wall was 2,700 m (8,900 ft) long, yet the southern wall was washed away when the Luo River changed its course centuries ago; by using the terminus points of the eastern and western walls, historians estimate that the southern wall was 2,460 m (8,070 ft) long.[134] The overall walled enclosure formed a rectangular shape, yet with some disruptive curves due to topographical obstructions.[134] Like Chang'an, Luoyang had twelve gatehouses, three for each side of the wall, while each gatehouse had three gateway entrances which led to major avenues within the city.[135] The rammed earth foundational platforms of religious altars and terraces still stand today outside of the walled perimeter of Luoyang, dedicated to the worship of deities and where state sacrifices were conducted.[136] They were approached by long ramps and once had timber halls built on top with verandas on the lower levels.[136]

Underground tombs

A Western-Han bronze door knocker in the shape of an animalistic head; door knockers have also been found in Han artwork, such as on ceramic models of gates leading to lower-level courtyards of multi-story towers and on underground stone tomb doors.
An Eastern-Han stone-carved tomb door decorated with a ringed door knocker, from a tomb in Luoyang

By the 1980s, over ten thousand brick-and-stone underground Han tombs had been discovered throughout China.[137] Earlier Chinese tombs dating to the Warring States were often vertically dug pits lined with wooden walls.[138] In digging the tomb sites, Han workers would first build vertical pits and then dig laterally, hence the name "horizontal pits" for Han tombs; this method was also used for tomb sites dug into the sides of mountains.[137] The walls of most Western Han tombs were built of large hollow bricks while the smaller, non-hollow brick type that dominated Eastern Han tomb architecture (with some made out of stone) appeared in the late Western Han.[139] The smaller brick type was better-suited for Han tomb archways at entrances, vaulted chambers, and domed roofs.[140] Underground vaults and domes did not require buttress supports since they were held in place by earthen pits.[141] The use of brick vaults and domes in aboveground Han structures is unknown.[141]

The layout of tombs dug into the sides of mountains typically had a front chamber, side chambers, and a rear chambers designed to imitate a complex of aboveground halls.[138] The tomb of King Liu Sheng (d. 113 BCE) in Hebei province not only had a front hall with window drapes and grave goods, carriages and horses in the southern separate side chamber, and storage goods in the northern side chamber, but also the remains of real timber houses with tiled roofs erected within (along with a house made of stone slabs and two stone doors in the rear chamber).[138] Doors made completely out of stone were found in many Han tombs as well as tombs in later dynasties.[142]

A total of twenty-nine monumental brick or stone-carved pillar-gates (que) from the Han dynasty have survived and can be found in the aboveground areas around Han tomb and shrine sites.[143] They often formed part of outer walls, usually flanking an entry but sometimes at the corners of walled enclosures.[144] Although they lack wooden and ceramic components, they feature imitation roof tiles, eaves, porches, and balustrades.[145]

Boreholes and mining shafts

On Han tomb brick reliefs of

Mining shafts dating to the Han dynasty have been found which reach depths of hundreds of meters (feet) beneath the earth, complete with spacious underground rooms structured by timber frames along with ladders and iron tools left behind.[149]

Ceramic model buildings

Ceramic models of a watchtower with crossbowmen (left), two residential towers (center and right), one with a first-floor courtyard and human figures on the top-floor balcony, along with other buildings

There are Han-era literary references to tall towers found in the capital cities; they often served as watchtowers, astronomical

Zhang Rang discouraged the aloof Emperor Ling of Han (r. 168–189 CE) from ascending to the top floors of tall towers (claiming it would cause bad luck), in order to conceal from him the enormous palatial mansions the eunuchs built for themselves in Luoyang.[151] It is not known for certain whether or not miniature ceramic models of residential towers and watchtowers found in Han-dynasty tombs are completely faithful representations of such timber towers, yet they reveal vital clues about lost timber architecture.[152]

There are only a handful of existing ceramic models of multi-story towers from pre-Han and Western Han eras; the bulk of the hundreds of towers found so far were made during the Eastern Han period.[152] Model towers could be fired as one piece in the kiln or assembled from several different ceramic pieces to create the whole.[153] No one tower is a duplicate of the other, yet they share common features.[153] They often had a walled courtyard at the bottom, a balcony with balustrades and windows for every floor, roof tiles capping and concealing the ceiling rafters, human figures peering out the windows or standing on the balconies, door knockers, and pets such as dogs in the bottom courtyard.[154] Perhaps the most direct pieces of evidence to suggest that miniature ceramic tower models are faithful representations of real-life Han timber towers are tile patterns.[155] Artistic patterns found on the circular tiles that cap the eave-ends on the miniature models are exact matches of patterns found on real-life Han roof tiles excavated at sites such as the royal palaces in Chang'an and Luoyang, and even the tiles of the original White Horse Temple.[155]

Besides towers, other ceramic models from the Han reveal a variety of building types. This includes multi-story storehouses such as granaries, courtyard houses with multi-story halls, kiosks, walled gate towers, mills, manufactories and workshops, animal pens, outhouses, and water wells.[156] Even models of single-story farmhouses show a great amount of detail, including tiled roofs, courtyards, steps leading to walkways, farmyards with troughs and basins, parapets, and privies.[157] Models of granaries and storehouses had tiled rooftops, dougong brackets, windows, and stilt supports raising them above ground level.[158] Han models of water wells sometimes feature tiny tiled roofs supported by beams that house the rope pulley used for lifting the bucket.[159]

Roads, bridges, and canals

In order to facilitate commerce and communication as well as speed the process of tax collection and movement of military troops, the Han government sponsored the building of new roads, bridges, and

State of Qin.[37] Accepting the proposal of Ni Kuan, in 111 BCE Emperor Wu commissioned Er to lead the project of creating extensions to the Zhengguo Canal that could irrigate nearby terrain elevated above the main canal.[161] Since a large amount of silt had built up over time at the bottom of the Zhengguo Canal (causing flooding), in 95 BCE another project was initiated to tap irrigation waters from further up the Jing River, requiring the dredging of a new 100 km (62 mi) long canal following a contour line above the Zhengguo.[161] The Han state also maintained a system of dikes to protect farmland from seasonal floods.[162]

Roadways, wooden bridges, postal stations, and relay stations were occasionally repaired, while many new facilities such as these were established.

Korean Peninsula in the far northeast.[168]

One of the most common bridge-types built during the Han was the wooden-trestle

Yangzi River) and were most often employed for military purposes since they could be easily assembled and then disassembled.[173]

Medicine

The Mawangdui Silk Texts, found in the Mawangdui, Changsha, Hunan province, provide information not only on astronomy and mythology, but also on Han-era medicine.

Much of the beliefs held by Han-era physicians are known to modern historians through such texts as the

clinical lancing to remove an abscess.[177] The Huangdi neijing noted the symptoms and reactions of people with various diseases of the liver, heart, spleen, lung, or kidneys in a 24-hour period, which was a recognition of circadian rhythm, although explained in terms of the five phases.[178]

In his

Treatise on Cold Injury and Miscellaneous Disorders (Shanghan zabing lun).[180] His contemporary and alleged associate Hua Tuo (d. 208 CE) was a physician who had studied the Huangdi neijing and became knowledgeable in Chinese herbology.[181] Hua Tuo used anesthesia on patients during surgery and created an ointment that was meant to fully heal surgery wounds within a month.[181] In one diagnosis of an ill woman, he deciphered that she bore a dead fetus within her womb which he then removed, curing her of her ailments.[181]

Historical sources say that Hua Tuo rarely practiced moxibustion and acupuncture.[181] The first mentioning of acupuncture in Chinese literature appeared in the Huangdi neijing.[182] Acupuncture needles made of gold were found in the tomb of the Han King Liu Sheng (d. 113 BCE).[183] Some stone-carved depictions of acupuncture date to the Eastern Han Era (25–220 CE).[183] Hua Tuo also wrote about the allegedly life-prolonging exercises of calisthenics.[181] In the 2nd-century-BCE medical texts excavated from the Mawangdui, illustrated diagrams of calisthenic positions are accompanied by descriptive titles and captions.[184] Vivienne Lo writes that the modern physical exercises of tai chi and qigong are derived from Han-era calisthenics.[185]

Cartography

Han military garrisons which were to attack Nanyue in 181 BCE.[188]

In

geometrically plotted reference grid.[191] However, historians Howard Nelson, Robert Temple, and Rafe de Crespigny argue that there is enough literary evidence that Zhang Heng's now lost work of 116 CE established the geometric reference grid in Chinese cartography (including a line from the Book of Later Han: "[Zhang Heng] cast a network of coordinates about heaven and earth, and reckoned on the basis of it").[192] Although there is speculation fueled by the report in Sima's Records of the Grand Historian that a gigantic raised-relief map representing the Qin Empire is located within the tomb of Qin Shi Huang, it is known that small raised-relief maps were created during the Han dynasty, such as one made out of rice by the military officer Ma Yuan (14 BCE – 49 CE).[193]

Nautics and vehicles

An Eastern-Han pottery ship model with a steering rudder at the stern and anchor at the bow

In 1975, an ancient shipyard discovered in Guangzhou is now dated to the late 3rd century BCE, made during either the Qin dynasty (221–206 BCE) or early Western Han dynasty.[28] It had three large platforms capable of building wooden ships that were 30 m (98 ft) long, 8 m (26 ft) wide, and had a weight capacity of 60 metric tons.[28] Another Han shipyard in what is now Anhui province had a government-operated maritime workshop where battle ships were assembled.[194] The widespread use of iron tools during the Han dynasty was essential for crafting such vessels.[28]

The

for-and-aft rigs and lug sails.[201]

A pottery model of a horse-drawn, roofed chariot from the Eastern Han period

Although horse and ox-drawn

State of Chu (as seen on a Chu lacquerware).[203] By Han times, the Chinese replaced this heavy yoke with a softer breast strap, as seen in Han stamped bricks and carved tomb reliefs.[204] In the final stage of evolution, the modern horse collar was invented in China by the 5th century, during the Northern Wei period.[205]

Weaponry and war machines

Warring States Period or the early Han dynpasty; made of bronze and inlaid with silver
Han dynasty iron sword and replicas

The pivot catapult, known as the traction trebuchet, had existed in China since the Warring States period (as evidenced by the Mozi).[206] It was regularly used in sieges during the Han dynasty, by both besiegers and the besieged.[206] The most common projectile weapon used during the Han dynasty was the small handheld, trigger-activated crossbow (and to a lesser extent, the repeating crossbow), first invented in China during the 6th or 5th century BCE.[207] Although the nomadic Xiongnu were able to twist their waists slightly while horse-riding and shoot arrows at targets behind them, the official Chao Cuo (d. 154 BCE) deemed the Chinese crossbow superior to the Xiongnu bow.[208]

The Han Chinese also employed chemical warfare. In quelling a peasant revolt near Guiyang in 178 CE, the imperial Han forces had horse-drawn chariots carrying bellows that were used to pump powdered lime (calcium oxide) at the rebels, who were dispersed.[209] In this same instance, they also lit incendiary rags tied to the tails of horses, so that the frightened horses would rush through the enemy lines and disrupt their formations.[209]

To deter pursuits of marching infantry or riding cavalry, the Han Chinese made caltrops (barbed iron balls with sharp spikes sticking out in all directions) that could be scattered on the ground and pierce the feet or hooves of those who were unaware of them.[27]

See also

Notes

  1. ^ Ebrey (1999), 66; Wang (1982), 100.
  2. ^ a b c Jin, Fan, & Liu (1996), 178–179.
  3. ^ a b Needham (1972), 111.
  4. ^ Loewe (1968), 89.
  5. .
  6. ^ Tom (1989), 99; Cotterell (2004), 11–13; Loewe (1968), 94–95.
  7. ^ Loewe (1968), 92–93.
  8. ^ Buisseret (1998), 12.
  9. ^ Needham (1986e), 1–2, 40–41, 122–123, 228.
  10. ^ Tom (1989), 99; Day & McNeil (1996), 122; Needham (1986e), 1–2, 40–41, 122–123, 228.
  11. ^ Cotterell (2004), 11.
  12. ^ Needham (1986e), 1–2.
  13. ^ Wang (1982), 146–147.
  14. ^ Wang (1982), 147–149.
  15. ^ a b c Wang (1982), 142–143.
  16. ^ Wang (1982), 143–145.
  17. ^ Wang (1982), 145.
  18. ^ Dewar (2002), 42.
  19. ^ Wagner (2001), 7, 36–37, 64–68; Pigott (1999), 183–184.
  20. ^ a b c Wagner (2001), 75–76.
  21. ^ Pigott (1999), 177 & 191.
  22. ^ Wang (1982), 125; Pigott (1999), 186.
  23. ^ Wang (1982), 125.
  24. ^ Wang (1982), 126.
  25. ^ Wagner (1993), 336.
  26. ^ Wang (1982), 122–123.
  27. ^ a b c d Wang (1982), 123.
  28. ^ a b c d Wang (1982), 122.
  29. ^ Wang (1982), 103–105 & 124
  30. ^ Ebrey (1986), 611–612; Nishijima (1986), 586–587.
  31. ^ a b Wang (1982), 53.
  32. ^ Wang (1982), 54.
  33. ^ Greenberger (2006), 12; Cotterell (2004), 24; Wang (1982), 54–55.
  34. ^ Wang (1982), 55.
  35. ^ Wang (1982), 55–56; Ebrey (1986), 617.
  36. ^ a b c d Nishijima (1986), 561.
  37. ^ a b Wang (1982), 59.
  38. ^ Swann (1974), 361.
  39. ^ a b Nishijima (1986), 562.
  40. ^ Nishijima (1986), 562–563.
  41. ^ a b Nishijima (1986), 563–564.
  42. ^ Nishijima (1986), 563–564; Ebrey (1986), 616–617.
  43. ^ a b c Nishijima (1986), 564–565.
  44. ^ Hinsch (2002), 67–68.
  45. ^ Nishijima (1986), 565; Hinsch (2002) 67–68.
  46. ^ Nishijima (1986), 565–566; Hinsch (2002), 67–68.
  47. ^ a b Nishijima (1986), 568–569.
  48. ^ a b Nishijima (1986), 570–572.
  49. ^ Needham (1986c), 2, 9; see also Barbieri-Low (2007), 36.
  50. ^ Needham (1986c), 2.
  51. ^ a b Temple (1986), 54–55.
  52. ^ Barbieri-Low (2007), 197.
  53. ^ Needham (1986c), 233–234.
  54. ^ Needham (1986c), 233–234; Barbieri-Low (2007), 198, writes that "For reasons I cannot determine, Joseph Needham estimated that Ding Huan was active around 180 CE, during the Latter Han period," although on the previous page 197, Barbieri-Low writes of Ding Huan's biography in the Miscellaneous Notes on the Western Capital, "The avoidance of some tabooed written characters in his story suggest to me that Ding Huan's tale may have been written during the Latter Han period."
  55. ^ Needham (1986c), 99, 134, 151, 233.
  56. ^ a b Temple (1986), 87; Needham (1986b), 123.
  57. ^ a b c Needham (1986c), 158.
  58. ^ Needham (1986c), 70–71.
  59. ^ a b Needham (1986c), 116–119, 153–154 & Plate CLVI; Temple (1986), 46; Wang (1982), 57.
  60. ^ Needham (1986c), 283–285.
  61. ^ Needham (1986c), 281–285.
  62. ^ Temple (1986), 86–87; Loewe (1968), 195–196.
  63. ^ a b Needham (1986c), 183–184, 390–392.
  64. ^ Needham (1986c), 89, 110, & 344.
  65. ^ Needham (1986c), 342–346.
  66. ^ Needham (1986c), 33 & 345.
  67. ^ de Crespigny (2007), 184; Needham (1986c), 370.
  68. ^ Needham (1986c), 30 & 479 footnote e; de Crespigny (2007), 1050; Morton & Lewis (2005), 70; Bowman (2000), 595; Temple (1986), 37.
  69. ^ Needham (1986c), 30 & 479 footnote e; de Crespigny (2007), 1050.
  70. ^ Ebrey (1986), 621.
  71. ^ de Crespigny (2007), 1050; Morton & Lewis (2005), 70.
  72. ^ Minford & Lau (2002), 307; Balchin (2003), 26–27; Needham (1986a), 627; Needham (1986c), 484; Krebs (2003), 31.
  73. ^ Needham (1986a), 626.
  74. ^ Needham (1986a), 626–627; Barbieri-Low (2007), 203.
  75. ^ a b c Needham (1986a), 627–631.
  76. ^ Needham (1986a), 626–627.
  77. ^ Needham (1986a), 631.
  78. ^ Liu et al. (2003), 9.
  79. ^ Cullen (2007), 138–149; Dauben (2007), 213–214.
  80. ^ a b Dauben (2007), 214.
  81. ^ Needham (1986a), 24–25.
  82. ^ Brian Lander. "State Management of River Dikes in Early China: New Sources on the Environmental History of the Central Yangzi Region." T'oung Pao 100.4–5 (2014): 350–352.
  83. ^ Dauben (2007), 213.
  84. ^ a b Dauben (2007), 212.
  85. ^ Dauben (2007) 212; Liu, Feng, Jiang, & Zheng (2003), 9–10.
  86. ^ Dauben (2007), 219.
  87. ^ Needham (1986a), 22; Dauben (2007), 221–222.
  88. ^ Temple (1986), 141; Liu, Feng, Jiang, & Zheng (2003), 9–10.
  89. ^ Temple (1986), 141.
  90. ^ a b Temple (1986), 139 & 142–143.
  91. ^ Needham (1986a), 24–25, 121; Shen, Crossley, & Lun (1999), 388; Straffin (1998), 166.
  92. ^ Temple (1986), 142.
  93. ^ Needham (1986a), 99–100.
  94. ^ a b Berggren, Borwein & Borwein (2004), 27.
  95. ^ Berggren & Borwein (2004), 27; Arndt, Haenel, & Lischka (2001), 176.
  96. ^ Berggren & Borwein (2004), 27; Arndt, Haenel, & Lischka (2001), 177.
  97. ^ de Crespigny (2007), 1050; Berggren & Borwein (2004), 27; Arndt, Haenel, & Lischka (2001), 177.
  98. ^ Needham (1986a), 100–101; Berggren, Borwein & Borwein (2004), 20 & 24–26.
  99. ^ a b McClain & Ming (1979), 207–208.
  100. ^ a b McClain & Ming (1979), 212; Needham (1986b), 218–219.
  101. ^ Temple (1986), 209; Needham (1986b), 227–228.
  102. ^ Loewe (1994), 61–79.
  103. ^ Temple (1986), 29–30.
  104. ^ Loewe (1994), 61; Csikszentmihalyi (2006), 173–175.
  105. ^ Loewe (1994), 65–66.
  106. ^ Loewe (1994), 69.
  107. ^ Loewe (1994), 75–76.
  108. ^ de Crespigny (2007), 1050; Balchin (2003), 27; Sun & Kristemaker (1997), 5 & 21–23.
  109. ^ Sun & Kistemaker (1997), 25 & 62.
  110. ^ Needham (1986a), 343; Barbieri-Low (2007), 203.
  111. ^ Cullen (2006), 7; Lloyd (1996), 168.
  112. ^ a b Deng (2005), 67.
  113. ^ de Crespigny (2007), 498.
  114. ^ Deng (2005), 67–69.
  115. ^ Csikszentmihalyi (2006), 167.
  116. ^ Dauben (2007), 214; Balchin (2003), 27; Huang (1988), 64; Sun & Kistemaker (1997), 62.
  117. ^ a b c Needham (1986a), 227.
  118. ^ a b c d Needham (1986a), 414.
  119. ^ a b c Needham (1986a), 468.
  120. ^ a b c d e f g h i Ebrey (1999), 76.
  121. ^ Steinhardt (2004), 228–238.
  122. ^ Thorp (1986), 360–378.
  123. ^ Wang (1982), 1 & 30, 39–40, 148–149; Chang (2007), 91–92.
  124. ^ Morton & Lewis (2005), 56.
  125. ^ Chang (2007), 91–92.
  126. ^ Ebrey (1999), 76; Steinhardt (2005), "Pleasure Tower Model," 275–277.
  127. ^ Loewe (1968), 138–139.
  128. ^ a b c Wang (1982), 1–2.
  129. ^ Wang (1982), 2.
  130. ^ a b Wang (1982), 2–3.
  131. ^ Wang (1982), 4.
  132. ^ a b Wang (1982), 4–6.
  133. ^ Bielenstein (1986), 262; Wang (1982), 30.
  134. ^ a b Wang (1982), 30.
  135. ^ Wang (1982), 30–31.
  136. ^ a b Wang (1982), 39.
  137. ^ a b Wang (1982), 175.
  138. ^ a b c Wang (1982), 176.
  139. ^ Wang (1982), 175, 177–178.
  140. ^ Wang (1982), 175, 177–178; Needham (1986d), 179–180.
  141. ^ a b Watson (2000), 108.
  142. ^ Fong (1991), 155.
  143. ^ Steinhardt (2005), "Pleasure Tower Model," 279; Wang (1982), 179–180.
  144. ^ Steinhardt (2005), "Pleasure Tower Model," 279; Liu (2002), 55.
  145. ^ Steinhardt (2005), "Pleasure Tower Model," 279–280; Liu (2002), 55.
  146. ^ a b c Loewe (1968), 191–194.
  147. ^ Tom (1989), 103.
  148. ^ Ronan (1994), 91.
  149. ^ Loewe (1968), 191–194; Wang (1982), 105.
  150. ^ Loewe (1968), 132–133.
  151. ^ de Crespigny (2007), 513–514.
  152. ^ a b Steinhardt (2005), "Pleasure Tower Model," 275–278.
  153. ^ a b Steinhardt (2005), "Pleasure Tower Model," 275–277.
  154. ^ Steinhardt (2005), "Pleasure Tower Model," 275–277, 280; Steinhardt (2005), "Tower Model," 283.
  155. ^ a b Steinhardt (2005), "Tower Model" 283–284.
  156. ^ Steinhardt (2005), "Pleasure Tower Model," 278.
  157. ^ Juliano (2005), "Model Farm," 287.
  158. ^ Hiromi (2005), "Storehouse Model," 291.
  159. ^ Liu (2005), "Green-glazed Wellhead," 293.
  160. ^ Di Cosmo (2002), 238; Ebrey (1986), 614; Needham (1986d), 281.
  161. ^ a b Needham (1986d), 286.
  162. ^ Brian Lander. “State Management of River Dikes in Early China: New Sources on the Environmental History of the Central Yangzi Region.” T’oung Pao 100.4–5 (2014): 325–62.
  163. ^ Ebrey (1986), 613–614; Needham (1986d), 35–37.
  164. ^ Needham (1986d), 7.
  165. ^ Needham (1986d), 5–7.
  166. ^ Needham (1986d), 18.
  167. ^ Needham (1986d), 19–21.
  168. ^ Needham (1986d), 24–25.
  169. ^ Needham (1986d), 149–150.
  170. ^ Needham (1986d), 171–172.
  171. ^ Liu (2002), 56.
  172. ^ Needham (1986d), 187–188.
  173. ^ Needham (1986d), 161; Bielenstein (1986), 255.
  174. ^ a b c d Csikszentmihalyi (2006), 181–182.
  175. ^ Csikszentmihalyi (2006), 181–182; Sun & Kistemaker (1997), 3–4.
  176. ^ Hsu (2001), 75.
  177. ^ Hsu (2001), 28–29.
  178. ^ Temple (1986), 124–126.
  179. ^ Temple (1986), 131.
  180. ^ de Crespigny (2007), 1055.
  181. ^ a b c d e de Crespigny (2007), 332.
  182. ^ Omura (2003), 15.
  183. ^ a b Omura (2003), 19–22.
  184. ^ Loewe (1994), 65.
  185. ^ Lo (2001), 23.
  186. ^ a b Hsu (1993), 90–93.
  187. ^ Hsu (1993), 90–93; Hansen (2000), 125.
  188. ^ Hansen (2000), 125.
  189. ^ a b Needham (1986a), 534–535.
  190. ^ Hargett (1996), 406.
  191. ^ Hsu (1993), 93–94; Needham (1986a), 538–540.
  192. ^ de Crespigny (2007), 1050; Nelson (1974), 359; Temple (1986), 30; see also Barbieri-Low (2007), 203.
  193. ^ Temple (1986), 179.
  194. ^ Nishijima (1986), 582.
  195. ^ Nishijima (1986), 579–580.
  196. ^ Nishijima (1986), 579–580; Liu (1988), 19; de Crespigny (2007), 600.
  197. ^ Needham (1986d), 627–628; Chung (2005), 152; Tom (1989), 103–104; Adshead (2000), 156; Fairbank & Goldman (1998), 93; Block (2003), 93 & 123.
  198. ^ Needham (1986d), 678; Turnbull (2002), 4 & 14–16; Woodman (2002), 6.
  199. ^ Turnbull (2002), 14; Needham (1986d), 390–391.
  200. ^ Adshead (2000), 156; Mott (1991), 2–3, 92, 84, 95f.
  201. ^ Temple (1986), 187.
  202. ^ Needham (1986c), 263–267; Greenberger (2006), 13.
  203. ^ Needham (1986c), 310; Temple (1986), 21.
  204. ^ Needham (1986c), 308–312.
  205. ^ Needham (1986c), 319–323.
  206. ^ a b Turnbull (2001), 18.
  207. ^ You (1994), 80; Wagner (1993), 153 & 157–158; Mao (1998), 109–110; Wright (2001), 42 & 159; Lin (1993), 36.
  208. ^ Di Cosmo (2002), 203.
  209. ^ a b Needham (1986f), 167.

References

External links