Scientific formalism

Source: Wikipedia, the free encyclopedia.

Scientific formalism is a family of approaches to the presentation of

physical sciences
.

Levels of formalism

There are multiple levels of scientific formalism possible. At the lowest level, scientific formalism deals with the symbolic manner in which the information is presented. To achieve formalism in a scientific theory at this level, one starts with a well defined set of axioms, and from this follows a formal system.

However, at a higher level, scientific formalism also involves consideration of the axioms themselves. These can be viewed as questions of

bacterium
exists still needs to be resolved.

Some actual formal theories on facts have been proposed.[1]

In modern physics

The scientific climate of the twentieth century revived these questions. From about the time of

continuum, and an agnostic view of atoms and their structure. Quantum mechanics
, the dominant physical theory after about 1925, was formulated in a way which raised questions of both types.

In the

heliocentric
model. He was, however, constrained to call his work (in effect) scientific formalism, under the old 'description' saving the phenomena. To avoid going against authority, the elliptic orbits of the heliocentric model could be labelled as a more convenient device for calculations, rather than an actual description of reality.

In

theoretical physicists, is that a good model is judged by our capacity to use it to calculate physical quantities that can be tested experimentally. Dirac's view is close to what Bas van Fraassen calls constructive empiricism.[2]

Duhem

A physicist who took the issues involved seriously was

classical analysis
methods alone was important one way or the other.

Duhem also wrote on saving the phenomena. In addition to the

, that

Reason may be employed in two ways to establish a point: firstly, for the purpose of furnishing sufficient proof of some principle [...]. Reason is employed in another way, not as furnishing a sufficient proof of a principle, but as confirming an already established principle, by showing the congruity of its results, as in astronomy the theory of eccentrics and epicycles is considered as established, because thereby the sensible appearances of the heavenly movements can be explained (possunt salvari apparentia sensibilia); not, however, as if this proof were sufficient, forasmuch as some other theory might explain them. [...][7]

The idea that a physical interpretation—in common language or classical ideas and physical entities, though of or examined in an ontological or quasi-ontological sense—of a phenomenon in physics is not an ultimate or necessary condition for its understanding or validity, also appears in modern

structural realist views on science.[8]

Bellarmine

Robert Bellarmine wrote to heliocentrist Paolo Antonio Foscarini:[9]

Nor is it the same to demonstrate that by assuming the sun to be at the center and the earth in heaven one can save the appearances, and to demonstrate that in truth the sun is at the center and the earth in heaven; for I believe the first demonstration may be available, but I have very great doubts about the second…

Modern physicist Pierre Duhem "suggests that in one respect, at least, Bellarmine had shown himself a better scientist than Galileo by disallowing the possibility of a 'strict proof of the earth's motion,' on the grounds that an astronomical theory merely 'saves the appearances' without necessarily revealing what 'really happens.'"[10]

See also

Notes

  1. ^ "Facts > Some Formal Theories in the Literature (Stanford Encyclopedia of Philosophy)". plato.stanford.edu. Retrieved 19 April 2018.
  2. ^ Monton, Bradley; Mohler, Chad (19 April 2018). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 19 April 2018 – via Stanford Encyclopedia of Philosophy.
  3. ^ An ancient view (attributed to Plato by Simplicius of Cilicia) on hypotheses, theories and phaenomena, on what scientists, or more historically accurately (ancient) astronomers, are for, are supposed to do; see . Wherein "The oldest extant text in which the expression "save the phenomena" is only of the first century A.D. namely Plutarch's On the Face in the Orb of the Moon", hence see also (in Greek) Plutarch, De faciae quae in orbe lunae apparet, 923a (or in English) at the Perseus Project
  4. ).
  5. .
  6. Kepler is, unquestionably, the strongest and most illustrious representative of that tradition," i.e., the tradition of realism
    , that physical theories offer explanations in addition to just "saving the phenomena."
  7. ^ Summa Theologica, I q. 32 a. 1 ad 2
  8. ^ Ladyman, James (19 April 2018). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 19 April 2018 – via Stanford Encyclopedia of Philosophy.
  9. ^ Bellarmine's 12 April 1615 letter to Galileo, translated in Galilei, Galileo; Maurice A Finocchiaro (2008). The essential Galileo. Indianapolis, Ind.: Hackett Pub. Co. pp. 146–148. Retrieved 2013-10-25.
  10. ^ *McMullin, Ernan (2008). "Robert Bellarmine". In Gillispie, Charles (ed.). Dictionary of Scientific Biography. Scribner & American Council of Learned Societies.