Search engine
A search engine is a software system that provides hyperlinks to web pages and other relevant information on the Web in response to a user's query. The user inputs a query within a web browser or a mobile app, and the search results are often a list of hyperlinks, accompanied by textual summaries and images. Users also have the option of limiting the search to a specific type of results, such as images, videos, or news.
For a search provider, its engine is part of a distributed computing system that can encompass many data centers throughout the world. The speed and accuracy of an engine's response to a query is based on a complex system of indexing that is continuously updated by automated web crawlers. This can include data mining the files and databases stored on web servers, but some content is not accessible to crawlers.
There have been many search engines since the dawn of the Web in the 1990s, but
History
Year | Engine | Current status |
---|---|---|
1993 | W3Catalog | Inactive |
ALIWEB | Inactive | |
JumpStation | Inactive | |
WWW Worm
|
Inactive | |
1994 | WebCrawler | Active |
Go.com | Inactive, redirects to Disney | |
Lycos | Active | |
Infoseek | Inactive, redirects to Disney | |
1995 | Yahoo! Search
|
Active, initially a search function for Yahoo! Directory
|
Daum | Active | |
Search.ch | Active | |
Magellan
|
Inactive | |
Excite | Active | |
MetaCrawler | Active | |
AltaVista | Inactive, acquired by Yahoo! in 2003, since 2013 redirects to Yahoo! | |
1996 | RankDex
|
Inactive, incorporated into Baidu in 2000 |
Dogpile | Active | |
HotBot | Inactive (used Inktomi search technology)
| |
Ask Jeeves | Active (rebranded ask.com) | |
1997 | AOL NetFind | Active (rebranded AOL Search since 1999)
|
goo.ne.jp
|
Active | |
Northern Light | Inactive | |
Yandex | Active | |
1998 | Active | |
Ixquick
|
Active as Startpage.com | |
MSN Search
|
Active as Bing | |
empas | Inactive (merged with NATE) | |
1999 | AlltheWeb | Inactive (URL redirected to Yahoo!) |
GenieKnows | Inactive, rebranded Yellowee (was redirecting to justlocalbusiness.com) | |
Naver | Active | |
Teoma | Inactive (redirect to Ask.com) | |
2000 | Baidu | Active |
Exalead | Inactive | |
Gigablast | Inactive | |
2001 | Kartoo | Inactive |
2003 | Info.com | Active |
2004 | A9.com | Inactive |
Clusty | Inactive (redirect to DuckDuckGo) | |
Mojeek | Active | |
Sogou
|
Active | |
2005 | SearchMe | Inactive |
KidzSearch
|
Active, Google Search | |
2006 | Soso | Inactive, merged with Sogou |
Quaero | Inactive | |
Search.com
|
Active | |
ChaCha | Inactive | |
Ask.com | Active | |
Live Search
|
Active as Bing, rebranded MSN Search | |
2007 | wikiseek | Inactive |
Sproose | Inactive | |
Wikia Search | Inactive | |
Blackle.com
|
Active, Google Search | |
2008 | Powerset | Inactive (redirects to Bing) |
Picollator | Inactive | |
Viewzi | Inactive | |
Boogami | Inactive | |
LeapFish | Inactive | |
Forestle | Inactive (redirects to Ecosia) | |
DuckDuckGo | Active | |
TinEye | Active | |
2009 | Bing
|
Active, rebranded Live Search |
Yebol | Inactive | |
Scout (Goby)
|
Active | |
NATE | Active | |
Ecosia | Active | |
Startpage.com | Active, sister engine of Ixquick | |
2010 | Blekko | Inactive, sold to IBM |
Cuil | Inactive | |
Yandex (English) | Active | |
Parsijoo | Active | |
2011 | YaCy | Active, P2P |
2012 | Volunia | Inactive |
2013 | Qwant | Active |
2014 | Egerin | Active, Kurdish / Sorani |
Swisscows | Active | |
Searx | Active | |
2015 | Yooz | Inactive |
Cliqz | Inactive | |
2016 | Kiddle | Active, Google Search |
2017 | Presearch | Active |
2018 | Kagi | Active |
2020 | Petal | Active |
2021 | Brave Search | Active |
Queye | Active | |
You.com | Active |
Pre-1990s
In 1945, Vannevar Bush described an information retrieval system that would allow a user to access a great expanse of information, all at a single desk.[3] He called it a memex. He described the system in an article titled "As We May Think" that was published in The Atlantic Monthly.[4] The memex was intended to give a user the capability to overcome the ever-increasing difficulty of locating information in ever-growing centralized indices of scientific work. Vannevar Bush envisioned libraries of research with connected annotations, which are similar to modern hyperlinks.[5]
Link analysis eventually became a crucial component of search engines through algorithms such as Hyper Search and PageRank.[6][7]
1990s: Birth of search engines
The first internet search engines predate the debut of the Web in December 1990:
Prior to September 1993, the
The first tool used for searching content (as opposed to users) on the
The rise of
" are characters in the series, thus referencing their predecessor.In the summer of 1993, no search engine existed for the web, though numerous specialized catalogs were maintained by hand. Oscar Nierstrasz at the University of Geneva wrote a series of Perl scripts that periodically mirrored these pages and rewrote them into a standard format. This formed the basis for W3Catalog, the web's first primitive search engine, released on September 2, 1993.[18]
In June 1993, Matthew Gray, then at
One of the first "all text" crawler-based search engines was WebCrawler, which came out in 1994. Unlike its predecessors, it allowed users to search for any word in any web page, which has become the standard for all major search engines since. It was also the search engine that was widely known by the public. Also, in 1994, Lycos (which started at Carnegie Mellon University) was launched and became a major commercial endeavor.
The first popular search engine on the Web was
Soon after, a number of search engines appeared and vied for popularity. These included
In 1996,
In 1996, Netscape was looking to give a single search engine an exclusive deal as the featured search engine on Netscape's web browser. There was so much interest that instead, Netscape struck deals with five of the major search engines: for $5 million a year, each search engine would be in rotation on the Netscape search engine page. The five engines were Yahoo!, Magellan, Lycos, Infoseek, and Excite.[30][31]
Search engines were also known as some of the brightest stars in the Internet investing frenzy that occurred in the late 1990s.[32] Several companies entered the market spectacularly, receiving record gains during their initial public offerings. Some have taken down their public search engine and are marketing enterprise-only editions, such as Northern Light. Many search engine companies were caught up in the dot-com bubble, a speculation-driven market boom that peaked in March 2000.
2000s–present: Post dot-com bubble
Around 2000,
By 2000,
Microsoft's rebranded search engine,
As of 2019,[update] active search engine crawlers include those of Google, Sogou, Baidu, Bing, Gigablast, Mojeek, DuckDuckGo and Yandex.
Approach
A search engine maintains the following processes in near real time:[34]
- Web crawling
- Indexing
- Searching[35]
Web search engines get their information by
Indexing means associating words and other definable tokens found on web pages to their domain names and HTML-based fields. The associations are made in a public database, made available for web search queries. A query from a user can be a single word, multiple words or a sentence. The index helps find information relating to the query as quickly as possible.[35] Some of the techniques for indexing, and caching are trade secrets, whereas web crawling is a straightforward process of visiting all sites on a systematic basis.
Between visits by the spider, the
Typically when a user enters a
Beyond simple keyword lookups, search engines offer their own GUI- or command-driven operators and search parameters to refine the search results. These provide the necessary controls for the user engaged in the feedback loop users create by filtering and weighting while refining the search results, given the initial pages of the first search results.
For example, from 2007 the Google.com search engine has allowed one to filter by date by clicking "Show search tools" in the leftmost column of the initial search results page, and then selecting the desired date range.
The usefulness of a search engine depends on the
Most Web search engines are commercial ventures supported by advertising revenue and thus some of them allow advertisers to have their listings ranked higher in search results for a fee. Search engines that do not accept money for their search results make money by running search related ads alongside the regular search engine results. The search engines make money every time someone clicks on one of these ads.[39]
Local search
Local search is the process that optimizes the efforts of local businesses. They focus on change to make sure all searches are consistent. It is important because many people determine where they plan to go and what to buy based on their searches.[40]
Market share
As of January 2022,[update]
Graphs are unavailable due to technical issues. Updates on reimplementing the Graph extension, which will be known as the Chart extension, can be found on Phabricator and on MediaWiki.org. |
Russia and East Asia
This section needs to be updated.(December 2023) |
In Russia,
Europe
Most countries' markets in the European Union are dominated by Google, except for the
The search engine Qwant is based in Paris, France, where it attracts most of its 50 million monthly registered users from.
Search engine bias
Although search engines are programmed to rank websites based on some combination of their popularity and relevancy, empirical studies indicate various political, economic, and social biases in the information they provide
Biases can also be a result of social processes, as search engine algorithms are frequently designed to exclude non-normative viewpoints in favor of more "popular" results.[52] Indexing algorithms of major search engines skew towards coverage of U.S.-based sites, rather than websites from non-U.S. countries.[49]
Several scholars have studied the cultural changes triggered by search engines,
Customized results and filter bubbles
There has been concern raised that search engines such as Google and Bing provide customized results based on the user's activity history, leading to what has been termed echo chambers or filter bubbles by Eli Pariser in 2011.[57] The argument is that search engines and social media platforms use algorithms to selectively guess what information a user would like to see, based on information about the user (such as location, past click behaviour and search history). As a result, websites tend to show only information that agrees with the user's past viewpoint. According to Eli Pariser users get less exposure to conflicting viewpoints and are isolated intellectually in their own informational bubble. Since this problem has been identified, competing search engines have emerged that seek to avoid this problem by not tracking or "bubbling" users, such as DuckDuckGo. However many scholars have questioned Pariser's view, finding that there is little evidence for the filter bubble.[58][59][60] On the contrary, a number of studies trying to verify the existence of filter bubbles have found only minor levels of personalisation in search,[60] that most people encounter a range of views when browsing online, and that Google news tends to promote mainstream established news outlets.[61][59]
Religious search engines
The global growth of the Internet and electronic media in the
While lack of investment and slow pace in technologies in the Muslim world has hindered progress and thwarted success of an Islamic search engine, targeting as the main consumers Islamic adherents, projects like Muxlim (a Muslim lifestyle site) received millions of dollars from investors like Rite Internet Ventures, and it also faltered. Other religion-oriented search engines are Jewogle, the Jewish version of Google,[63] and Christian search engine SeekFind.org. SeekFind filters sites that attack or degrade their faith.[64]
Search engine submission
Web search engine submission is a process in which a webmaster submits a website directly to a search engine. While search engine submission is sometimes presented as a way to promote a website, it generally is not necessary because the major search engines use web crawlers that will eventually find most web sites on the Internet without assistance. They can either submit one web page at a time, or they can submit the entire site using a
Some search engine submission software not only submits websites to multiple search engines, but also adds links to websites from their own pages. This could appear helpful in increasing a website's ranking, because external links are one of the most important factors determining a website's ranking. However, John Mueller of Google has stated that this "can lead to a tremendous number of unnatural links for your site" with a negative impact on site ranking.[65]
Comparison to social bookmarking
In comparison to search engines, a social bookmarking system has several advantages over traditional automated resource location and classification software, such as search engine
Technology
This article or section may need to be cleaned up or summarized because it has been split from/to Search engine technology#Web search engines . |
Archie
The first web search engine was Archie, created in 1990[67] by Alan Emtage, a student at McGill University in Montreal. The author originally wanted to call the program "archives", but had to shorten it to comply with the Unix world standard of assigning programs and files short, cryptic names such as grep, cat, troff, sed, awk, perl, and so on.
The primary method of storing and retrieving files was via the File Transfer Protocol (FTP). This was (and still is) a system that specified a common way for computers to exchange files over the Internet. It works like this: Some administrator decides that he wants to make files available from his computer. He sets up a program on his computer, called an FTP server. When someone on the Internet wants to retrieve a file from this computer, he or she connects to it via another program called an FTP client. Any FTP client program can connect with any FTP server program as long as the client and server programs both fully follow the specifications set forth in the FTP protocol.
Initially, anyone who wanted to share a file had to set up an FTP server in order to make the file available to others. Later, "anonymous" FTP sites became repositories for files, allowing all users to post and retrieve them.
Even with archive sites, many important files were still scattered on small FTP servers. These files could be located only by the Internet equivalent of word of mouth: Somebody would post an e-mail to a message list or a discussion forum announcing the availability of a file.
Archie changed all that. It combined a script-based data gatherer, which fetched site listings of anonymous FTP files, with a regular expression matcher for retrieving file names matching a user query. (4) In other words, Archie's gatherer scoured FTP sites across the Internet and indexed all of the files it found. Its regular expression matcher provided users with access to its database.[68]
Veronica
In 1993, the University of Nevada System Computing Services group developed Veronica.[67] It was created as a type of searching device similar to Archie but for Gopher files. Another Gopher search service, called Jughead, appeared a little later, probably for the sole purpose of rounding out the comic-strip triumvirate. Jughead is an acronym for Jonzy's Universal Gopher Hierarchy Excavation and Display, although, like Veronica, it is probably safe to assume that the creator backed into the acronym. Jughead's functionality was pretty much identical to Veronica's, although it appears to be a little rougher around the edges.[68]
The Lone Wanderer
The World Wide Web Wanderer, developed by Matthew Gray in 1993[69] was the first robot on the Web and was designed to track the Web's growth. Initially, the Wanderer counted only Web servers, but shortly after its introduction, it started to capture URLs as it went along. The database of captured URLs became the Wandex, the first web database.
Matthew Gray's Wanderer created quite a controversy at the time, partially because early versions of the software ran rampant through the Net and caused a noticeable netwide performance degradation. This degradation occurred because the Wanderer would access the same page hundreds of times a day. The Wanderer soon amended its ways, but the controversy over whether robots were good or bad for the Internet remained.
In response to the Wanderer, Martijn Koster created Archie-Like Indexing of the Web, or ALIWEB, in October 1993. As the name implies, ALIWEB was the HTTP equivalent of Archie, and because of this, it is still unique in many ways.
ALIWEB does not have a web-searching robot. Instead, webmasters of participating sites post their own index information for each page they want listed. The advantage to this method is that users get to describe their own site, and a robot does not run about eating up Net bandwidth. The disadvantages of ALIWEB are more of a problem today. The primary disadvantage is that a special indexing file must be submitted. Most users do not understand how to create such a file, and therefore they do not submit their pages. This leads to a relatively small database, which meant that users are less likely to search ALIWEB than one of the large bot-based sites. This Catch-22 has been somewhat offset by incorporating other databases into the ALIWEB search, but it still does not have the mass appeal of search engines such as Yahoo! or Lycos.[68]
Excite
Excite, initially called Architext, was started by six Stanford undergraduates in February 1993. Their idea was to use statistical analysis of word relationships in order to provide more efficient searches through the large amount of information on the Internet. Their project was fully funded by mid-1993. Once funding was secured. they released a version of their search software for webmasters to use on their own web sites. At the time, the software was called Architext, but it now goes by the name of Excite for Web Servers.[68]
Excite was the first serious commercial search engine which launched in 1995.[70] It was developed in Stanford and was purchased for $6.5 billion by @Home. In 2001 Excite and @Home went bankrupt and InfoSpace bought Excite for $10 million.
Some of the first analysis of web searching was conducted on search logs from Excite[71][72]
Yahoo!
In April 1994, two Stanford University Ph.D. candidates,
As the number of links grew and their pages began to receive thousands of hits a day, the team created ways to better organize the data. In order to aid in data retrieval, Yahoo! (www.yahoo.com) became a searchable directory. The search feature was a simple database search engine. Because Yahoo! entries were entered and categorized manually, Yahoo! was not really classified as a search engine. Instead, it was generally considered to be a searchable directory. Yahoo! has since automated some aspects of the gathering and classification process, blurring the distinction between engine and directory.
The Wanderer captured only URLs, which made it difficult to find things that were not explicitly described by their URL. Because URLs are rather cryptic to begin with, this did not help the average user. Searching Yahoo! or the Galaxy was much more effective because they contained additional descriptive information about the indexed sites.
Lycos
At Carnegie Mellon University during July 1994, Michael Mauldin, on leave from CMU, developed the Lycos search engine.
Types of web search engines
Search engines on the web are sites enriched with facility to search the content stored on other sites. There is difference in the way various search engines work, but they all perform three basic tasks.[73]
- Finding and selecting full or partial content based on the keywords provided.
- Maintaining index of the content and referencing to the location they find
- Allowing users to look for words or combinations of words found in that index.
The process begins when a user enters a query statement into the system through the interface provided.
Type | Example | Description |
---|---|---|
Conventional | librarycatalog | Search by keyword, title, author, etc. |
Text-based | Google, Bing, Yahoo! | Search by keywords. Limited search using queries in natural language. |
Voice-based | Google, Bing, Yahoo! | Search by keywords. Limited search using queries in natural language. |
Multimedia search | QBIC, WebSeek, SaFe | Search by visual appearance (shapes, colors,..) |
Q/A | Stack Exchange, NSIR | Search in (restricted) natural language |
Clustering Systems | Vivisimo, Clusty | |
Research Systems | Lemur, Nutch |
There are basically three types of search engines: Those that are powered by robots (called crawlers; ants or spiders) and those that are powered by human submissions; and those that are a hybrid of the two.
Crawler-based search engines are those that use automated software agents (called crawlers) that visit a Web site, read the information on the actual site, read the site's meta tags and also follow the links that the site connects to performing indexing on all linked Web sites as well. The crawler returns all that information back to a central depository, where the data is indexed. The crawler will periodically return to the sites to check for any information that has changed. The frequency with which this happens is determined by the administrators of the search engine.
Human-powered search engines rely on humans to submit information that is subsequently indexed and catalogued. Only information that is submitted is put into the index.
In both cases, when you query a search engine to locate information, you're actually searching through the index that the search engine has created —you are not actually searching the Web. These indices are giant databases of information that is collected and stored and subsequently searched. This explains why sometimes a search on a commercial search engine, such as Yahoo! or Google, will return results that are, in fact, dead links. Since the search results are based on the index, if the index has not been updated since a Web page became invalid the search engine treats the page as still an active link even though it no longer is. It will remain that way until the index is updated.
So why will the same search on different search engines produce different results? Part of the answer to that question is because not all indices are going to be exactly the same. It depends on what the spiders find or what the humans submitted. But more important, not every search engine uses the same algorithm to search through the indices. The algorithm is what the search engines use to determine the relevance of the information in the index to what the user is searching for.
One of the elements that a search engine algorithm scans for is the frequency and location of keywords on a Web page. Those with higher frequency are typically considered more relevant. But search engine technology is becoming sophisticated in its attempt to discourage what is known as keyword stuffing, or spamdexing.
Another common element that algorithms analyze is the way that pages link to other pages in the Web. By analyzing how pages link to each other, an engine can both determine what a page is about (if the keywords of the linked pages are similar to the keywords on the original page) and whether that page is considered "important" and deserving of a boost in ranking. Just as the technology is becoming increasingly sophisticated to ignore keyword stuffing, it is also becoming more savvy to Web masters who build artificial links into their sites in order to build an artificial ranking.
Modern web search engines are highly intricate software systems that employ technology that has evolved over the years. There are a number of sub-categories of search engine software that are separately applicable to specific 'browsing' needs. These include web search engines (e.g.
Another category of search engines is scientific search engines. These are search engines which search scientific literature. The best known example is Google Scholar. Researchers are working on improving search engine technology by making them understand the content element of the articles, such as extracting theoretical constructs or key research findings.[74]
See also
- Comparison of web search engines
- Filter bubble
- Google effect
- Information retrieval
- Use of web search engines in libraries
- Itpints
- List of search engines
- Question answering
- Search engine manipulation effect
- Search engine privacy
- Semantic Web
- Spell checker
- Web development tools
- Web query
- Wikipedia:Search engine test, for a tutorial on using search engines for researching Wikipedia articles
References
- ^ "Search Engine Market Share Worldwide | StatCounter Global Stats". StatCounter. Retrieved 19 February 2024.
- ^ a b "Search Engine Market Share Worldwide". Similarweb Top search engines. Retrieved 19 February 2024.
- ^ Bush, Vannevar (1 July 1945). "As We May Think". The Atlantic. Archived from the original on 22 August 2012. Retrieved 22 February 2024.
- ^ "Search Engine History.com". www.searchenginehistory.com. Retrieved 2 July 2020.
- ^ "Penn State WebAccess Secure Login". webaccess.psu.edu. Archived from the original on 22 January 2022. Retrieved 2 July 2020.
- ^ Marchiori, Massimo (1997). "The Quest for Correct Information on the Web: Hyper Search Engines". Proceedings of the Sixth International World Wide Web Conference (WWW6). Retrieved 10 January 2021.
- ^ a b Brin, Sergey; Page, Larry (1998). "The Anatomy of a Large-Scale Hypertextual Web Search Engine" (PDF). Proceedings of the Seventh International World Wide Web Conference (WWW7). Archived from the original (PDF) on 13 July 2017. Retrieved 10 January 2021.
- ^ "Knowbot programming: System support for mobile agents". cnri.reston.va.us.
- ^ Deutsch, Peter (11 September 1990). "[next] An Internet archive server server (was about Lisp)". groups.google.com. Retrieved 29 December 2017.
- ^ "World-Wide Web Servers". W3C. Retrieved 14 May 2012.
- ^ "What's New! February 1994". Mosaic Communications Corporation!. Retrieved 14 May 2012.
- ^ Search Engine Watch (September 2001). "Search Engines". Internet History. Netherlands: Universiteit Leiden. Archived from the original on 13 April 2009.
- ^ a b "Archie". PCMag. Retrieved 20 September 2020.
- ITHAKA. Retrieved 20 September 2020.
- ^ loop news barbados. "Alan Emtage- a Barbadian you should know". loopnewsbarbados.com. Archived from the original on 23 September 2020. Retrieved 21 September 2020.
- huffingtonpost.co.uk. Retrieved 21 September 2020.
- ^ Oscar Nierstrasz (2 September 1993). "Searchable Catalog of WWW Resources (experimental)".
- ^ "Archive of NCSA what's new in December 1993 page". 20 June 2001. Archived from the original on 20 June 2001. Retrieved 14 May 2012.
- TechTarget. September 2005. Retrieved 5 September 2019.
- ISBN 9783319611617.
- ^ "Yahoo! Search". Yahoo!. 28 November 1996. Archived from the original on 28 November 1996. Retrieved 5 September 2019.
- ^ Greenberg, Andy, "The Man Who's Beating Google", Forbes magazine, October 5, 2009
- ^ a b "About: RankDex", rankdex.com
- ^ USPTO, "Hypertext Document Retrieval System and Method", US Patent number: 5920859, Inventor: Yanhong Li, Filing date: Feb 5, 1997, Issue date: Jul 6, 1999
- ^ "Baidu Vs Google: The Twins Of Search Compared". FourWeekMBA. 18 September 2018. Retrieved 16 June 2019.
- ^ Altucher, James (18 March 2011). "10 Unusual Things About Google". Forbes. Retrieved 16 June 2019.
- ^ a b "Method for node ranking in a linked database". Google Patents. Archived from the original on 15 October 2015. Retrieved 19 October 2015.
- ^ "Yahoo! And Netscape Ink International Distribution Deal" (PDF). Archived from the original (PDF) on 16 November 2013. Retrieved 12 August 2009.
- ^ "Browser Deals Push Netscape Stock Up 7.8%". Los Angeles Times. 1 April 1996.
- ISSN 0167-7187.
- ^ "Our history in depth". Archived from the original on 1 November 2012. Retrieved 31 October 2012.
- ^ "Definition – search engine". Techtarget. Retrieved 1 June 2023.
- ^ ISBN 978-0-07-07-0086-4, retrieved 23 November 2012
- ^ Dasgupta, Anirban; Ghosh, Arpita; Kumar, Ravi; Olston, Christopher; Pandey, Sandeep; and Tomkins, Andrew. The Discoverability of the Web. http://www.arpitaghosh.com/papers/discoverability.pdf
- ^ Jansen, B. J., Spink, A., and Saracevic, T. 2000. Real life, real users, and real needs: A study and analysis of user queries on the web. Information Processing & Management. 36(2), 207–227.
- ^ Chitu, Alex (30 August 2007). "Easy Way to Find Recent Web Pages". Google Operating System. Retrieved 22 February 2015.
- ^ "how search engine works?". GFO. Retrieved 26 June 2018.
- ^ "What Is Local SEO & Why Local Search Is Important". Search Engine Journal. Retrieved 26 April 2020.
- ^ Kerr, Dara (2 May 2024). "U.S. v. Google: As landmark 'monopoly power' trial closes, here's what to look for". NPR.
- ^ "Live Internet - Site Statistics". Live Internet. Retrieved 4 June 2014.
- ^ Arthur, Charles (3 June 2014). "The Chinese technology companies poised to dominate the world". The Guardian. Retrieved 4 June 2014.
- ^ "How Naver Hurts Companies' Productivity". The Wall Street Journal. 21 May 2014. Retrieved 4 June 2014.
- ^ "Age of Internet Empires". Oxford Internet Institute. Retrieved 15 August 2019.
- ^ Waddell, Kaveh (19 January 2016). "Why Google Quit China—and Why It's Heading Back". The Atlantic. Retrieved 26 April 2020.
- ^ Kissane, Dylan (5 August 2015). "Seznam Takes on Google in the Czech Republic". DOZ.
- ^ Segev, El (2010). Google and the Digital Divide: The Biases of Online Knowledge, Oxford: Chandos Publishing.
- ^ S2CID 18977861.
- ^ Jansen, B. J. and Rieh, S. (2010) The Seventeen Theoretical Constructs of Information Searching and Information Retrieval. Journal of the American Society for Information Sciences and Technology. 61(8), 1517–1534.
- ^ Berkman Center for Internet & Society (2002), "Replacement of Google with Alternative Search Systems in China: Documentation and Screen Shots", Harvard Law School.
- S2CID 2111039.
- ISBN 9781136933066.
- S2CID 84831583.
- ^ Hiroko Tabuchi, "How Climate Change Deniers Rise to the Top in Google Searches", The New York Times, Dec. 29, 2017. Retrieved November 14, 2018.
- .
- OCLC 682892628.
- S2CID 37860225.
- ^ S2CID 211483210.
- ^ S2CID 168906316.
- S2CID 53774351.
- ^ "New Islam-approved search engine for Muslims". News.msn.com. Archived from the original on 12 July 2013. Retrieved 11 July 2013.
- ^ "Jewogle - FAQ". Archived from the original on 7 February 2019. Retrieved 6 February 2019.
- ^ "Halalgoogling: Muslims Get Their Own "sin free" Google; Should Christians Have Christian Google? - Christian Blog". Christian Blog. 25 July 2013. Archived from the original on 13 September 2014. Retrieved 13 September 2014.
- Search Engine Roundtable. Retrieved 4 April 2016.
- ^ Heymann, Paul; Koutrika, Georgia; Garcia-Molina, Hector (12 February 2008). "Can Social Bookmarking Improve Web Search?". First ACM International Conference on Web Search and Data Mining. Retrieved 12 March 2008.
- ^ ISBN 978-1-4398-7162-1. Retrieved 3 June 2014.
- ^ a b c d "A History of Search Engines". Wiley. Retrieved 1 June 2014.
- ISBN 978-1-4398-7162-1. Retrieved 3 June 2014.
- ^ "The Major Search Engines". 21 January 2014. Archived from the original on 5 June 2014. Retrieved 1 June 2014.
- ^ Jansen, B. J., Spink, A., Bateman, J., and Saracevic, T. 1998. Real life information retrieval: A study of user queries on the web. SIGIR Forum, 32(1), 5 -17.
- ^ Jansen, B. J., Spink, A., and Saracevic, T. 2000. Real life, real users, and real needs: A study and analysis of user queries on the web. Information Processing & Management. 36(2), 207–227.
- ISBN 978-1-4398-7162-1. Retrieved 3 June 2014.
- S2CID 219401379.
Further reading
- Steve Lawrence; C. Lee Giles (1999). "Accessibility of information on the web". S2CID 4347646.
- Bing Liu (2007), Web Data Mining: Exploring Hyperlinks, Contents and Usage Data. Springer,ISBN 3-540-37881-2
- Bar-Ilan, J. (2004). The use of Web search engines in information science research. ARIST, 38, 231–288.
- Levene, Mark (2005). An Introduction to Search Engines and Web Navigation. Pearson.
- Hock, Randolph (2007). The Extreme Searcher's Handbook.ISBN 978-0-910965-76-7
- Javed Mostafa (February 2005). "Seeking Better Web Searches". .
- Ross, Nancy; Wolfram, Dietmar (2000). "End user searching on the Internet: An analysis of term pair topics submitted to the Excite search engine". Journal of the American Society for Information Science. 51 (10): 949–958. .
- Xie, M.; et al. (1998). "Quality dimensions of Internet search engines". Journal of Information Science. 24 (5): 365–372. S2CID 34686531.
- Information Retrieval: Implementing and Evaluating Search Engines. MIT Press. 2010. Archived from the original on 5 October 2020. Retrieved 7 August 2010.
- Yeo, ShinJoung. (2023) Behind the Search Box: Google and the Global Internet Industry (U of Illinois Press, 2023) ISBN 10:0252087127 online