Seismic refraction

Source: Wikipedia, the free encyclopedia.
Propagating seismic waves (bottom) and related travel time diagram (top) of the direct (blue) and the first refracted phase (green)

Seismic refraction is a geophysical principle governed by

Snell's Law of refraction. The seismic refraction method utilizes the refraction of seismic waves by rock or soil layers to characterize the subsurface geologic conditions and geologic structure
.

Seismic refraction is exploited in

and an energy source.

The methods depend on the fact that seismic waves have differing velocities in different types of soil or rock. The waves are refracted when they cross the boundary between different types (or conditions) of soil or rock. The methods enable the general soil types and the approximate depth to strata boundaries, or to bedrock, to be determined.

P-wave refraction

P-wave refraction evaluates the

primary wave
and is usually more-readily identifiable within the seismic recording as compared to the other seismic waves.

S-wave refraction

S-wave refraction evaluates the

secondary wave
. When compared to the compression wave, the shear wave is approximately one-half (but may vary significantly from this estimate) the velocity depending on the medium.

Two horizontal layers

Two layers model.
Two layers model.

ic0 - critical angle
V0 - velocity of the first layer
V1 - velocity of the second layer
h0 - thickness of the first layer
T01 - intercept

Several horizontal layers


Inversion methods

Applications

Seismic refraction has been successfully applied to tailings characterisation through P- and S-wave travel time tomographic inversions.[1]

See also

References

  1. ^ Alofe, Emmanuel (2021). Reflection Seismic Survey for Characterising Historical Tailings and Deep Targeting at the Blötberget Mine, Central Sweden.