Senolytic

Source: Wikipedia, the free encyclopedia.

A senolytic (from the words senescence and -lytic, "destroying") is among a class of small molecules under basic research to determine if they can selectively induce death of senescent cells and improve health in humans.[1] A goal of this research is to discover or develop agents to delay, prevent, alleviate, or reverse age-related diseases.[2][3] Removal of senescent cells with senolytics has been proposed as a method of enhancing immunity during aging.[4]

A related concept is "senostatic", which means to suppress senescence.[5]

Research

Possible senolytic agents are under preliminary research, including some which are in

chemotherapeutic drug dasatinib and the experimental small molecule navitoclax.[8][9]

Soluble

chimeric antigen receptor T cells to eliminate senescent cells in mice.[10][11]

According to reviews, it is thought that senolytics can be administered intermittently while being as effective as continuous administration. This could be an advantage of senolytic drugs and decrease adverse effects, for instance circumventing potential off-target effects.[6][12][13][14]

Recently, artificial intelligence has been used to discover new senolytics, resulting in the identification of structurally distinct senolytic compounds with more favorable medicinal chemistry properties than previous senolytic candidates.[15][16]

Senolytic candidates

Hypothetical candidates for senolytics based on early-stage research
Medication/target Description Tests as senolytic have been conducted in ...
human cell lines in vitro mice models
xenograft
model
phase I trial phase II trial phase III trial
FOXO4-related peptides[13][17][12][6] FOXO4 binding to
mitochondria in the cytosol where it would activate caspases, leading to apoptosis (programmed cell death).[18] Instead, retention of p53 in the nucleus by FOXO4 promotes cellular senescence.[18] A peptide that binds with FOXO4 disrupts the p53-FOXO4 interaction, releasing p53 into the cytosol and triggering cell death.[18]
Yes[18] Yes[18]
BCL-2 inhibitors Inhibitors of different members of the bcl-2 family of anti-apoptotic proteins.[13][19][20] Studies of cell cultures of senescent human umbilical vein endothelial cells have shown that both fisetin and quercetin induce apoptosis by inhibition of the anti-apoptotic protein Bcl-xL (a bcl-2 family member).[6] Yes[6]
Src inhibitors Src tyrosine kinase inhibitors: dasatinib[21] – see "Combination of dasatinib and quercetin" below
USP7 inhibitors Inhibitors of USP7 (ubiquitin-specific processing protease 7)[17] Yes[22] Yes[22]
Dasatinib and Quercetin (D+Q) Combination of dasatinib and quercetin[20][19][14][13] Yes Yes Yes[23][24]
Fisetin[13][19][12][6] Yes[25] Yes[25]
Navitoclax[13][6] xenograft Yes[26]
SSK1 Senescence-specific killing compound 1: A
β-galactosidase (a common senescence marker)[27]
Yes[27]
BIRC5 knockout Crispr/Cas9
BIRC5 Gene Knockout. Crispr/Cas9 is used to trigger apoptosis in relation to a specified gene sequence such as a cancer gene sequence or damage marker sequences.[28]
Yes[28]
GLS1 inhibitors Target the enzyme
lysosomal content and leaking lysosomal membranes. This low pH forms the basis of senescence-associated beta-galactosidase (SA-β-gal) staining of senescent cells. To help neutralize their low pH, senescent cells produce high levels of GLS1; inhibiting the activity of this enzyme exposes senescent cells to unsurvivably severe internal acidity, leading to cell death.[29]
Yes[29]
Anti-GPNMB vaccine Glycoprotein nonmetastatic melanoma protein B (GPNMB). A protein that enrich senescent cells studied as molecular target for a senolytic vaccine in mice.[30] Yes[30]
Cardiac glycosides[13][12] Yes[31][32][33] xenograft Yes[32]
25-hydroxycholesterol (25HC)[34]
25-hydroxycholesterol targets CRYAB in multiple human and mouse cell types Yes[34] Yes[34]
Procyanidin C1 Yes[35] Yes[35]
EF-24[19][12] Yes
HSP90 inhibitors[36]
CUDC-907[37]

Senomorphics

Senolytics

Rapamycin and rapalog Everolimus – modulate properties of senescent cells without eliminating them, suppressing phenotypes of senescence, including the SASP.[13][12]

See also

References

Further reading