Sequential pattern mining

Source: Wikipedia, the free encyclopedia.
(Redirected from
Sequence mining
)

Sequential pattern mining is a topic of

structured data mining
.

There are several key traditional computational problems addressed within this field. These include building efficient databases and indexes for sequence information, extracting the frequently occurring patterns, comparing sequences for similarity, and recovering missing sequence members. In general, sequence mining problems can be classified as string mining which is typically based on string processing algorithms and itemset mining which is typically based on association rule learning. Local process models [3] extend sequential pattern mining to more complex patterns that can include (exclusive) choices, loops, and concurrency constructs in addition to the sequential ordering construct.

String mining

String mining typically deals with a limited

mutations
occur in a string.

A survey and taxonomy of the key algorithms for sequence comparison for bioinformatics is presented by Abouelhoda & Ghanem (2010), which include:[4]

Itemset mining

Some problems in sequence mining lend themselves to discovering frequent itemsets and the order they appear, for example, one is seeking rules of the form "if a {customer buys a car}, he or she is likely to {buy insurance} within 1 week", or in the context of stock prices, "if {Nokia up and Ericsson up}, it is likely that {Motorola up and Samsung up} within 2 days". Traditionally, itemset mining is used in marketing applications for discovering regularities between frequently co-occurring items in large transactions. For example, by analysing transactions of customer shopping baskets in a supermarket, one can produce a rule which reads "if a customer buys onions and potatoes together, he or she is likely to also buy hamburger meat in the same transaction".

A survey and taxonomy of the key algorithms for item set mining is presented by Han et al. (2007).[5]

The two common techniques that are applied to sequence databases for frequent itemset mining are the influential apriori algorithm and the more-recent FP-growth technique.

Applications

With a great variation of products and user buying behaviors, shelf on which products are being displayed is one of the most important resources in retail environment. Retailers can not only increase their profit but, also decrease cost by proper management of shelf space allocation and products display. To solve this problem, George and Binu (2013) have proposed an approach to mine user

buying patterns using PrefixSpan algorithm and place the products on shelves based on the order of mined purchasing patterns.[6]

Algorithms

Commonly used algorithms include:

  • GSP algorithm
  • Sequential Pattern Discovery using Equivalence classes (SPADE)
  • FreeSpan
  • PrefixSpan
  • MAPres[7]
  • Seq2Pat (for constraint-based sequential pattern mining)[8][9]

See also

References

External links

  • SPMF includes open-source implementations of GSP, PrefixSpan, SPADE, SPAM and many others.