Sequoioideae

Source: Wikipedia, the free encyclopedia.

Sequoioideae
Temporal range: Jurassic–Present
The trunk of a Metasequoia glyptostroboides
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Gymnospermae
Division: Pinophyta
Class: Pinopsida
Order:
Cupressales
Family: Cupressaceae
Subfamily: Sequoioideae
Genera

Sequoioideae, commonly referred to as Redwoods, is a

coniferous trees within the family Cupressaceae, that range in the northern hemisphere. It includes the largest and tallest trees in the world. The trees in the subfamily are amongst the most notable trees in the world and are common ornamental trees. In prehistoric times the genus Austrosequoia was common until the Oligocene. The subfamily was dominant during the Jurassic and Cretaceous
periods.

Description

The three redwood subfamily genera are Sequoia from coastal California and Oregon, Sequoiadendron from California's Sierra Nevada, and Metasequoia in China. The redwood species contains the largest and tallest trees in the world. These trees can live for thousands of years. Threats include logging, fire suppression,[1] illegal marijuana cultivation, and burl poaching.[2][3]

Only two of the genera, Sequoia and Sequoiadendron, are known for massive trees. Trees of Metasequoia, from the single living species Metasequoia glyptostroboides, are deciduous, grow much smaller (although are still large compared to most other trees) and can live in colder climates.[citation needed]

Taxonomy and evolution

Multiple studies of both morphological and molecular characters have strongly supported the assertion that the Sequoioideae are

phylogenies place Sequoia as sister to Sequoiadendron and Metasequoia as the out-group.[5][7][8] However, Yang et al. went on to investigate the origin of a peculiar genetic component in Sequoioideae, the polyploidy of Sequoia—and generated a notable exception that calls into question the specifics of this relative consensus.[7]

Cladistic tree

A 2006 paper based on non-molecular evidence suggested the following relationship among extant species:[9]

Sequoioideae
Metasequoia

M. glyptostroboides (dawn redwood)

Sequoia

S. sempervirens (coast redwood)

Sequoiadendron

S. giganteum (giant sequoia)

Taxodioideae

A 2021 study using molecular evidence found the same relationships among Sequoioideae species, but found Sequoioideae to be the sister group to the Athrotaxidoideae (a superfamily presently known only from Tasmania) rather than to Taxodioideae. Sequoioideae and Athrotaxidoideae are thought to have diverged from each other during the Jurassic.[10]

Possible reticulate evolution in Sequoioideae

Reticulate evolution refers to the origination of a taxon through the merging of ancestor lineages.

hexaploid (2n= 6x= 66). To investigate the origins of this polyploidy Yang et al. used two single copy nuclear genes, LFY and NLY, to generate phylogenetic trees. Other researchers have had success with these genes in similar studies on different taxa.[7]

Several hypotheses have been proposed to explain the origin of Sequoia's polyploidy:

autohexaploidy, autoallohexaploidy, or segmental allohexaploidy.[citation needed
]

Yang et al. found that Sequoia was clustered with Metasequoia in the tree generated using the LFY gene but with Sequoiadendron in the tree generated with the NLY gene. Further analysis strongly supported the hypothesis that Sequoia was the result of a

hybridization event involving Metasequoia and Sequoiadendron. Thus, Yang et al. hypothesize that the inconsistent relationships among Metasequoia, Sequoia, and Sequoiadendron could be a sign of reticulate evolution by hybrid speciation (in which two species hybridize and give rise to a third) among the three genera. However, the long evolutionary history of the three genera (the earliest fossil remains being from the Jurassic) make resolving the specifics of when and how Sequoia originated once and for all a difficult matter—especially since it in part depends on an incomplete fossil record.[8]

Extant species

Paleontology

Sequoioideae is an ancient taxon, with the oldest described Sequoioideae species, Sequoia jeholensis, recovered from Jurassic deposits.[12][13] A genus Medulloprotaxodioxylon, reported from the late Triassic of China supports the idea of a Late Triassic Norian origin.[14]

The fossil record shows a massive expansion of range in the Cretaceous and dominance of the Arcto-Tertiary Geoflora, especially in northern latitudes. Genera of Sequoioideae were found in the Arctic Circle, Europe, North America, and throughout Asia and Japan.[15] A general cooling trend beginning in the late Eocene and Oligocene reduced the northern ranges of the Sequoioideae, as did subsequent ice ages.[16] Evolutionary adaptations to ancient environments persist in all three species despite changing climate, distribution, and associated flora, especially the specific demands of their reproduction ecology that ultimately forced each of the species into refugial ranges where they could survive.[citation needed]

The extinct genus Austrosequoia is known from the Late Cretaceous-Oligocene of the Southern Hemisphere, including Australia and New Zealand.[17]

Young but already tall redwood trees (Sequoia sempervirens) in Oakland, California

Conservation

In 2024, it was estimated that there were about 500,000 redwoods in Britain, mostly brought as seeds and seedlings from the US in the Victorian era.[18] The entire subfamily is endangered. The IUCN Red List Category & Criteria assesses Sequoia sempervirens as Endangered (A2acd), Sequoiadendron giganteum as Endangered (B2ab) and Metasequoia glyptostroboides as Endangered (B1ab). In 2024 it was reported that over a period of two years about one-fifth of all giant sequoias were destroyed in extreme wildfires in California.[19]

See also

  • Temperate cloud forest of North America Westcoast (Sequoia forests)

References

  1. ^ "Prescribed Fire at Redwood National and State Parks - Redwood National and State Parks (U.S. National Park Service)".
  2. ^ "Why redwood burl poaching is so destructive". Christian Science Monitor. 5 March 2014.
  3. S2CID 158505170
    .
  4. .
  5. ^ .
  6. .
  7. ^ .
  8. ^ .
  9. .
  10. .
  11. .
  12. . Retrieved 9 March 2021.
  13. ^ Ahuja M. R. and D. B. Neale. 2002. Origins of polyploidy in coast redwood (Sequoia sempervirens) and relationship of coast redwood (Sequoia sempervirens) to other genera of Taxodiaceae. Archived 2 January 2014 at the Wayback Machine Silvae Genetica 51: 93–99.
  14. .
  15. . Retrieved 1 January 2014.
  16. .
  17. .
  18. ^ Tapper, James (16 March 2024). "Hidden giants: how the UK's 500,000 redwoods put California in the shade". The Guardian.
  19. ^ Sommer, Lauren; Kellman, Ryan (26 February 2024). "Wildfires are killing California's ancient giants. Can seedlings save sequoia trees?". NPR. Retrieved 16 March 2024.

Bibliography and links

External links