Seymour Benzer

Source: Wikipedia, the free encyclopedia.
Seymour Benzer
behavioral genetics, chronobiology, neurogenetics
InstitutionsPurdue University
California Institute of Technology
ThesisPhotoelectric Effects in Germanium (1947)

Seymour Benzer (October 15, 1921 – November 30, 2007) was an American

behavioral geneticist. His career began during the molecular biology revolution of the 1950s, and he eventually rose to prominence in the fields of molecular and behavioral genetics. He led a productive genetics research lab both at Purdue University and as the James G. Boswell Professor of Neuroscience, emeritus, at the California Institute of Technology.[1][2][3]

Biography

Early life and education

Benzer was born in the South Bronx to Meir Benzer and Eva Naidorf, both Jews from Poland.[4][5] He had two older sisters, and his parents favored him as the only boy.[6] One of Benzer's earliest scientific experiences was dissecting frogs he had caught as a boy. In an interview at Caltech, Benzer also remembered receiving a microscope for his 13th birthday, “and that opened up the whole world.”[7] The book Arrowsmith by Sinclair Lewis heavily influenced the young Benzer, and he even imitated the handwriting of Max Gottlieb, a scientist character in the novel. Benzer graduated from New Utrecht High School at 15 years old.[8]

In 1938 he enrolled at Brooklyn College where he majored in physics.[3] Benzer then moved on to Purdue University to earn his Ph.D. in solid state physics. While there he was recruited for a secret military project to develop improved radar. He performed research that led to the development of stable germanium rectifiers and discovered a germanium crystal able to be used at high voltages, among the scientific work that led to the first transistor.[2][3][9]

Personal life

At Brooklyn College, as a sixteen-year-old freshman, Benzer met Dorothy Vlosky (nicknamed Dotty), a twenty-one-year-old nurse. He later married her in New York City in 1942.[8] They had two daughters, Barbie (Barbara) and Martha Jane.

Benzer died of a stroke at the Huntington Hospital in Pasadena, California.[9]

Scientific career

Molecular biology

Upon receiving his Ph.D. in 1947, he was immediately hired as an assistant professor in physics at Purdue. However, Benzer was inspired by

nonsense mutations.[13]

Benzer's work influenced many other scientists of his time (see

triplet code of DNA. In addition, Benzer's mapping technique was taken up by Richard Feynman.[8]

In 1967, Benzer left the field of phage genetics and returned to the California Institute of Technology to work in

behavioral genetics
.

Behavioral genetics

Benzer vs. Hirsch

Benzer was one of the first scientists to rise to prominence in the field of

behavioral genetics. As the field began to emerge in the 1960s and 70s, Benzer found himself in scientific opposition to another of the field's leading researchers, Jerry Hirsch. While Hirsch believed that behaviors were complex phenomena irreducible to the level of single genes, Benzer advocated that animal behaviors were not too complex to be directed by a single gene. This translated to methodological differences in the two researchers' experiments with Drosophila that profoundly influenced the field of behavioral genetics. Hirsch artificially selected for behaviors of interest over many generations, while Benzer primarily used forward genetic mutagenesis screens to isolate mutants for a particular behavior.[14]
Benzer and Hirsch's competing philosophies served to provide necessary scientific tension in order to accelerate and enhance developments in behavioral genetics, helping it gain traction as a legitimate area of study in the scientific community.

Research accomplishments

Benzer used forward genetics to investigate the genetic basis of various behaviors such as

circadian rhythms, and learning by inducing mutations in a Drosophila population and then screening individuals for altered phenotypes of interest.[10] To better identify mutants, Benzer developed novel apparatuses such as the countercurrent device, which was designed to separate flies according to the magnitude and direction of their phototactic response.[15] Benzer identified mutants for a wide variety of characteristics: vision (nonphototactic, negative phototactic, and eyes absent[16]), locomotion (sluggish, uncoordinated), stress sensitivity (freaked-out), sexual function (savoir-faire, fruitless), nerve and muscle function (photoreceptor degeneration, drop-dead), and learning and memory (rutabaga, dunce[17]).[18]

Benzer and student

Ron Konopka discovered the first circadian rhythm mutants. Three distinct mutant types—arrhythmic, shortened period, and lengthened period—were identified. These mutations all involved the same functional gene on the X chromosome and influenced the eclosion rhythm of the population as well as rhythms in individual flies' locomotor activity.[19] To monitor Drosophila locomotor activity, Benzer and postdoctoral researcher, Yoshiki Hotta, designed a system using infrared light and solar cells.[19] All three mutations were mapped to the X chromosome, zero centimorgans away from each other, indicating that the mutant phenotypes corresponded to alleles of the same gene, which Konopka named period.[19] This was the first of several seminal studies of single genes affecting behavior, studies that have been replicated in other animal models and are now the basis for the growing field of molecular biology of behavior. In 1992 Benzer, working with Michael Rosbash, furthered this work by showing that the PER protein, which period codes for, is predominantly located in the nucleus.[20]
The work with Period mutants was catalytic in the study of circadian rhythms and served to propel the field forward.

On 2 October 2017, Dr. Rosbash, along with Drs. Michael W. Young and Jeffrey C. Hall, were awarded the Nobel Prize in Physiology or Medicine in recognition of their cloning of circadian rhythm genes, and the elucidation of the biochemical mechanisms by which the circadian rhythm protein products regulated behavior.

Benzer was at the forefront of the study of neurodegeneration in fruit flies, modeling human diseases and attempting to suppress them. He also contributed to the field of aging biology, looking for mutants with altered longevity and trying to dissect the mechanisms by which an organism can escape the inevitable functional downfall and its associated diseases.

'Cell'', on the longevity effect of 4E-BP, a translational repressor, following dietary restriction. Although the research was done before his death, the paper was published afterwards and dedicated to his memory.[23]

Cancer research

In 1978, Dotty was in the hospital with breast cancer, and Seymour's friend, colleague, and mentor Max Delbrück was diagnosed with cancer. Consequently, Seymour Benzer took interest in cancer biology and attended several conferences on breast cancer.[8] Benzer later remarried with Carol Miller, a

genes between flies and humans.[8]

Honors and awards

Benzer with Ronald Reagan in 1986

He was a member of the French Academy of Sciences, the U.S. National Academy of Sciences, the American Philosophical Society and the Royal Society.

Books

Benzer is the subject of the 1999 book Time, Love, Memory: A Great Biologist and His Quest for the Origins of Behavior by Pulitzer laureate Jonathan Weiner,[8] and Reconceiving the Gene: Seymour Benzer's Adventures in Phage Genetics by Lawrence Holmes.[6]

See also

References

  1. ^ .
  2. ^ .
  3. ^ a b c Carl Zimmer (8 December 2007). "Seymour Benzer, geneticist, is dead at 86". The New York Times. Retrieved 2008-02-18.
  4. ^ "Seymor Benzer". 15 October 1921.
  5. ^ http://oralhistories.library.caltech.edu/27/1/OH_Benzer_S.pdf [bare URL PDF]
  6. ^ .
  7. ^ Benzer, Seymour (1991). "Seymour Benzer (1921-2007) Interviewed by Heidi Asputrian". Oral History Project. California Institute of Technology Archives. Retrieved 19 April 2011.
  8. ^ .
  9. ^ a b "Neurogenetics Pioneer Seymour Benzer Dies" (Press release). California Institute of Technology. 30 November 2007. Archived from the original on 8 February 2008. Retrieved 2008-02-18.
  10. ^
    S2CID 206511019
    .
  11. ^ .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. ^ .
  20. .
  21. ^ "Would that he were Methuselah: Seymour Benzer, 1921-2007". Ouroboros. 2007-12-03. Retrieved 2007-12-07.
  22. S2CID 43149680
    .
  23. .
  24. ^ "Book of Members, 1780–2010: Chapter B" (PDF). American Academy of Arts and Sciences. Retrieved June 15, 2011.
  25. ^ The Louisa Gross Horwitz Prize Committee (2007). "The Louisa Gross Horwitz Prize for Biology Or Biochemistry". Columbia University Medical Center. Retrieved 2008-02-18.
  26. ^ "Seymour Benzer". Crafoord Prize. 2022-08-22. Retrieved 2024-02-24.
  27. ^ "Daniel Giraud Elliot Medal". National Academy of Sciences. Retrieved 16 February 2011.

External links