Sheffer stroke
NAND | |
---|---|
Definition | |
Truth table | |
Logic gate | |
Normal forms | |
Disjunctive | |
Conjunctive | |
Zhegalkin polynomial | |
Post's lattices | |
0-preserving | no |
1-preserving | no |
Monotone | no |
Affine | no |
Self-dual | no |
Logical connectives | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
||||||||||||||||||||||
Related concepts | ||||||||||||||||||||||
Applications | ||||||||||||||||||||||
Category | ||||||||||||||||||||||
In
Its
Definition
The non-conjunction is a
Truth table
The truth table of is as follows.
F | F | T |
F | T | T |
T | F | T |
T | T | F |
Logical equivalences
The Sheffer stroke of and is the negation of their conjunction
By De Morgan's laws, this is also equivalent to the disjunction of the negations of and
Alternative notations and names
Peirce was the first to show the functional completeness of non-conjunction (representing this as ) but didn't publish his result.[2][3] Peirce's editor added ) for non-disjunction[citation needed].[3]
In 1911, Stamm was the first to publish a proof of the completeness of non-conjunction, representing this with (the Stamm hook)[4] and non-disjunction in print at the first time and showed their functional completeness.[5]
In 1913,
In 1928, Hilbert and Ackermann described non-conjunction with the operator .[6][7]
In 1929, Łukasiewicz used in for non-conjunction in his Polish notation.[8]
An alternative notation for non-conjunction is . It is not clear who first introduced this notation, although the corresponding for non-disjunction was used by Quine in 1940,.[9]
History
The stroke is named after
Properties
NAND does not possess any of the following five properties, each of which is required to be absent from, and the absence of all of which is sufficient for, at least one member of a set of
This can also be realized as follows: All three elements of the functionally complete set {AND, OR, NOT} can be constructed using only NAND. Thus the set {NAND} must be functionally complete as well.
Other Boolean operations in terms of the Sheffer stroke
Expressed in terms of NAND , the usual operators of propositional logic are:
|
|
| ||||||||||||||||||||||||||||||||||||||||
|
|
Functional completeness
The Sheffer stroke, taken by itself, is a functionally complete set of connectives.[13][14] This can be proved by first showing, with a truth table, that is truth-functionally equivalent to .[15] Then, since is truth-functionally equivalent to ,[15] and is equivalent to ,[15] the Sheffer stroke suffices to define the set of connectives ,
See also
- Boolean domain
- CMOS
- Gate equivalent (GE)
- Logical graph
- Minimal axioms for Boolean algebra
- NAND flash memory
- NAND logic
- Peirce's law
- Peirce arrow= NOR
- Sole sufficient operator
References
- ^ ISBN 978-0-415-13342-5.
- ^ Peirce, C. S. (1933) [1880]. "A Boolian Algebra with One Constant". In Hartshorne, C.; Weiss, P. (eds.). Collected Papers of Charles Sanders Peirce, Volume IV The Simplest Mathematics. Massachusetts: Harvard University Press. pp. 13–18.
- ^ a b Peirce, C. S. (1933) [1902]. "The Simplest Mathematics". In Hartshorne, C.; Weiss, P. (eds.). Collected Papers of Charles Sanders Peirce, Volume IV The Simplest Mathematics. Massachusetts: Harvard University Press. pp. 189–262.
- ^ Zach, R. (2023-02-18). "Sheffer stroke before Sheffer: Edward Stamm". Retrieved 2023-07-02.
- ^ S2CID 119816758.
- ^ Hilbert, D.; Ackermann, W. (1928). Grundzügen der theoretischen Logik (in German) (1 ed.). Berlin: Verlag von Julius Springer. p. 9.
- ^ Hilbert, D.; Ackermann, W. (1950). Luce, R. E. (ed.). Principles of Mathematical Logic. Translated by Hammond, L. M.; Leckie, G. G.; Steinhardt, F. New York: Chelsea Publishing Company. p. 11.
- ^ Łukasiewicz, J. (1958) [1929]. Elementy logiki matematycznej (in Polish) (2 ed.). Warszawa: Państwowe Wydawnictwo Naukowe.
- ^ Quine, W. V (1981) [1940]. Mathematical Logic (Revised ed.). Cambridge, London, New York, New Rochelle, Melbourne and Sydney: Harvard University Press. p. 45.
- JSTOR 1988701.
- Proceedings of the Cambridge Philosophical Society. 19: 32–41.
- ^ Church, Alonzo (1956). Introduction to mathematical logic. Vol. 1. Princeton University Press. p. 134.
- ^ Weisstein, Eric W. "Propositional Calculus". mathworld.wolfram.com. Retrieved 2024-03-22.
- ^ Franks, Curtis (2023), "Propositional Logic", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Fall 2023 ed.), Metaphysics Research Lab, Stanford University, retrieved 2024-03-22
- ^ ISBN 978-0-415-13342-5.
Further reading
- Précis de logique mathématique)
- Peirce, Charles Sanders (1931–1935) [1880]. "A Boolian Algebra with One Constant". In Hartshorne, Charles; Weiss, Paul (eds.). Collected Papers of Charles Sanders Peirce. Vol. 4. Cambridge: Harvard University Press. pp. 12–20.