Simon Stevin

Source: Wikipedia, the free encyclopedia.

Simon Stevin

Simon Stevin (Dutch:

music theorist.[1] He made various contributions in many areas of science and engineering, both theoretical and practical. He also translated various mathematical terms into Dutch, making it one of the few European languages in which the word for mathematics, wiskunde (wis and kunde, i.e., "the knowledge of what is certain"), was not a loanword from Greek but a calque via Latin. He also replaced the word chemie, the Dutch for chemistry, by scheikunde ("the art of separating"), made in analogy with wiskunde
.

Biography

Very little is known with certainty about Simon Stevin's life, and what we know is mostly inferred from other recorded facts.[2] The exact birth date and the date and place of his death are uncertain. It is assumed he was born in Bruges, since he enrolled at Leiden University under the name Simon Stevinus Brugensis (meaning "Simon Stevin from Bruges"). His name is usually written as Stevin, but some documents regarding his father use the spelling Stevijn (pronunciation [ˈste:vεɪn]); this was a common spelling shift in 16th-century Dutch.[3] Simon Stevin's mother, Cathelijne (or Catelyne), was the daughter of a wealthy family from

Calvinists; it is thought that Simon Stevin was likely brought up in the Calvinist faith.[4]

It is believed that Stevin grew up in a relatively affluent environment and enjoyed a good education. He was likely educated at a Latin school in his hometown.[5]

Simon Stevin's travels

Stevin left Bruges in 1571 apparently without a particular destination. Stevin was most likely a

castellany
of Bruges.

Why he had returned to Bruges in 1577 is not clear. It may have been related to the political events of that period. Bruges was the scene of intense religious conflict. Catholics and Calvinists alternately controlled the government of the city. They usually opposed each other but would occasionally collaborate in order to counteract the dictates of King Philip II of Spain. In 1576 a certain level of official religious tolerance was decreed. This could explain why Stevin returned to Bruges in 1577. Later the Calvinists seized power in many Flemish cities and incarcerated Catholic clerics and secular governors supportive of the Spanish rulers. Between 1578 and 1584 Bruges was ruled by Calvinists.

Simon Stevin in the Netherlands

In 1581 Stevin again left his native Bruges and moved to

Maurice, the Count of Nassau.[4]
Stevin is listed in the university's registers until 1590 and apparently never graduated.

Following William the Silent's assassination and Prince Maurice's assumption of his father's office, Stevin became the principal advisor and tutor of Prince Maurice. Prince Maurice asked his advice on many occasions, and made him a

quartermaster-general of the army of the States-General.[8]
Prince Maurice also asked Stevin to found an engineering school within the University of Leiden.

Stevin moved to The Hague where he bought a house in 1612. He married in 1610 or 1614 and had four children. It is known that he left a widow with two children at his death in Leiden or The Hague in 1620.[4]

Discoveries and inventions

Prince Maurice of Orange
(engraving by Jacques de Gheyn).

Stevin is responsible for many discoveries and inventions. Stevin wrote numerous bestselling books, and he was a pioneer of the development and the practical application of (engineering related) science such as

Al-Kashi
.

His contemporaries were most struck by his invention of a so-called

Prince Maurice of Orange and twenty-six others, used the carriage on the beach between Scheveningen and Petten. The carriage was propelled solely by the force of wind and acquired a speed which exceeded that of horses.[7]

Management of waterways

Stevin's work in the waterstaet involved improvements to the

gear teeth. These improved threefold the efficiency of the windmills used in pumping water out of the polders.[9] He received a patent on his innovation in 1586.[8]

Philosophy of science

Stevin's aim was to bring about a second age of

monosyllabic words than in any of the (European) languages he had compared it with.[7] This was one of the reasons why he wrote all of his works in Dutch and left the translation of them for others to do. The other reason was that he wanted his works to be practically useful to people who had not mastered the common scientific language of the time, Latin. Thanks to Simon Stevin the Dutch language got its proper scientific vocabulary such as "wiskunde" ("kunst van het gewisse of zekere" the art of what is known or what is certain) for mathematics, "natuurkunde" (the "art of nature") for physics, "scheikunde" (the "art of separation") for chemistry, "sterrenkunde" (the "art of stars") for astronomy, "meetkunde" (the "art of measuring") for geometry
.

Geometry, physics and trigonometry

Stevin's proof of the law of equilibrium on an inclined plane, known as the "Epitaph of Stevinus".

Stevin was the first to show how to model regular and semiregular

polyhedra by delineating their frames in a plane. He also distinguished stable from unstable equilibria.[7]

Stevin contributed to trigonometry with his book, De Driehouckhandel.

In The First Book of the Elements of the Art of Weighing, The second part: Of the propositions [The Properties of Oblique Weights], Page 41, Theorem XI, Proposition XIX,

E. J. Dijksterhuis, Stevin's proof of the equilibrium on an inclined plane can be faulted for using perpetual motion to imply a reductio ad absurdum. Dijksterhuis says Stevin "intuitively made use of the principle of conservation of energy ... long before it was formulated explicitly".[2]
: 54 

He demonstrated the resolution of forces before Pierre Varignon, which had not been remarked previously, even though it is a simple consequence of the law of their composition.[7]

Stevin discovered the

hydrostatic paradox, which states that the pressure in a liquid is independent of the shape of the vessel and the area of the base, but depends solely on its height.[7]

He also gave the measure for the pressure on any given portion of the side of a vessel.[7]

He was the first to explain the

tides using the attraction of the moon.[7]

In 1586, he demonstrated that two objects of different weight fall with the same acceleration.[11][12]

Music theory

Van de Spiegheling der singconst.

The first mention of equal temperament related to the

lutenist and musical theorist Vincenzo Galilei (father of Galileo Galilei), a onetime pupil of Gioseffo Zarlino
.

Bookkeeping

Bookkeeping by double entry may have been known to Stevin, as he was a clerk in

Decimal fractions

Stevin wrote a 35-page

Al-Kashi's book, Key to Arithmetic, was written at the beginning of the 15th century and was the stimulus for the systematic application of decimals to whole numbers and fractions thereof.[16][17] But nobody established their daily use before Stevin. He felt that this innovation was so significant, that he declared the universal introduction of decimal coinage, measures and weights to be merely a question of time.[18][7]

His notation is rather unwieldy. The

trigonometrical tables (1612) it occurs, and it was accepted by John Napier in his logarithmic papers (1614 and 1619).[7]

Stevin printed little circles around the exponents of the different powers of one-tenth. That Stevin intended these encircled numerals to denote mere exponents is clear from the fact that he employed the same symbol for powers of algebraic quantities. He did not avoid fractional exponents; only negative exponents do not appear in his work.[7]

Stevin wrote on other scientific subjects – for instance optics, geography, astronomy – and a number of his writings were translated into Latin by W. Snellius (

Willebrord Snell). There are two complete editions in French of his works, both printed in Leiden, one in 1608, the other in 1634.[7]

Mathematics

Oeuvres mathematiques, 1634

Stevin wrote his Arithmetic in 1594. The work brought to the western world for the first time a general solution of the quadratic equation, originally documented nearly a millennium previously by Brahmagupta in India.

According to

infinite series.[22]

Neologisms

Stevin thought the Dutch language to be excellent for scientific writing, and he translated many of the mathematical terms to Dutch. As a result, Dutch is one of the few Western European languages that have many mathematical terms that do not stem from Greek or Latin. This includes the very name wiskunde (mathematics).

His eye for the importance of having the scientific language be the same as the language of the craftsman may show from the dedication of his book De Thiende ('The Disme' or 'The Tenth'): 'Simon Stevin wishes the stargazers, surveyors, carpet measurers, body measurers in general, coin measurers and tradespeople good luck.' Further on in the same pamphlet, he writes: "[this text] teaches us all calculations that are needed by the people without using fractions. One can reduce all operations to adding, subtracting, multiplying and dividing with integers."

Some of the words he invented evolved: 'aftrekken' (subtract) and 'delen' (divide) stayed the same, but over time 'menigvuldigen' became 'vermenigvuldigen' (multiply, the added 'ver' emphasizes the fact it is an action). 'Vergaderen' (gathering) became 'optellen' (add lit. count up).

Another example is the Dutch word for diameter: 'middellijn', lit.: line through the middle.

The word 'zomenigmaal' (quotient lit. 'that many times') has been replaced by 'quotiënt' in modern-day Dutch.

Other terms did not make it into modern day mathematical Dutch, like 'teerling' (die, although still being used in the meaning as die), instead of cube.

Trivia

  • The study association of mechanical engineering at the
    land yachts
    .
  • Stevin, cited as Stevinus, is one of the favorite authors – if not the favorite author – of Uncle Toby Shandy in
    Tristram Shandy
    Gentleman.
  • Quote: A man in anger is no clever dissembler.[24]
  • In Bruges there is a Simon Stevin Square which holds a statue of Stevin made by Eugène Simonis. The statue incorporates Stevin's inclined plane diagram.
  • Operating from the port of Ostend is a survey vessel RV Simon Stevin named after him.[25]

Publications

The Moers fortifications designed by Simon Stevin.

Amongst others, he published:

References

  1. ^ Researchers later discovered that decimal fractions had already been introduced by the medieval Islamic scholar al-Uqlidisi in a book written in 952.
  1. ^ required)
  2. ^
    Martinus Nijhoff Publishers
    , Dutch original 1943, 's-Gravenhage
  3. ^ (nl) G. Van de Bergh Het tijdschrift De Vlaamse Stam, jaargang 34, pp. 323–328 and (nl) Bibliography to the Van Den Bergh article in De Vlaamse Stam'
  4. ^ a b c d O'Connor, John J.; Robertson, Edmund F. (January 2004), "Simon Stevin", MacTutor History of Mathematics Archive, University of St Andrews
  5. ^ a b The Wonderful World of Simon Stevin: 'Magic is No Magic', J. T. Devreese, G. Vanden Berghe, WIT Press, 1st ed., 2008
  6. ^ Dijksterhuis E.J. (ed.), The Principal Works of Simon Stevin, vol I, Mechanics (N.V. Swets & Zeitlinger, Amsterdam 1955)
  7. ^ a b c d e f g h i j k l m  One or more of the preceding sentences incorporates text from a publication now in the public domainChisholm, Hugh, ed. (1911). "Stevinus, Simon". Encyclopædia Britannica (11th ed.). Cambridge University Press.
  8. ^
    S2CID 144054163
    .
  9. ^ The Story of Science: Power, Proof & Passion – EP4: Can We Have Unlimited Power?
  10. ^ The Principal Works of Simon Stevin
  11. ^ Appendix to De Beghinselen Der Weeghconst
  12. .
  13. ^ "Van de spiegheling der singconst". Diapason.xentonic.org. 30 June 2009. Archived from the original on 17 July 2011. Retrieved 29 December 2012.
  14. .
  15. ^ Volmer, Frans. "Stevin, Simon (1548–1620)." In History of Accounting: An International Encyclopedia, edited by Michael Chatfield and Richard Vangermeesch. New York: Garland Publishing, 1996, pp. 565–566.
  16. ^ O'Connor, John J.; Robertson, Edmund F. (July 2009), "Al-Kashi", MacTutor History of Mathematics Archive, University of St Andrews
  17. .
  18. .
  19. .
  20. ^ Karin Usadi Katz and
  21. ^ simonstevin.tue.nl
  22. ^ Crone et al., eds. 1955–1966, Vol. I, p.11[permanent dead link]
  23. ^ "RV Simon Stevin. Platform for marine research". Flanders Marine Institute. Retrieved 11 August 2022.
  24. ^ The topic contained in http://www-history.mcs.st-and.ac.uk/Biographies/Stevin.html, the relevant portion could be searched with string, "Wiskonstighe Ghedachtenissen". The summary of it may be found at the link
  25. ^ Stevin, Simon, Les œuvres mathématiques...

Further reading