Sodium chromate

Source: Wikipedia, the free encyclopedia.
Sodium chromate
Names
IUPAC name
Sodium chromate
Other names
Chromic acid, (Na2CrO4), disodium salt
Chromium disodium oxide
Rachromate
Identifiers
3D model (
JSmol
)
ChEBI
ChemSpider
ECHA InfoCard
100.028.990 Edit this at Wikidata
EC Number
  • 231-889-5
RTECS number
  • GB2955000
UNII
UN number 3288
  • InChI=1S/Cr.2Na.4O/q;2*+1;;;2*-1
  • [O-][Cr](=O)(=O)[O-].[Na+].[Na+]
Properties
Na2CrO4
Molar mass 161.97 g/mol
Appearance yellow crystals
Odor odorless
Density 2.698 g/cm3
Melting point 792 °C (1,458 °F; 1,065 K) (anhydrous)
20 °C (decahydrate)
31.8 g/100 mL (0 °C)
84.5 g/100 mL (25 °C)
126.7 g/100 mL (100 °C)
Solubility slightly soluble in ethanol
Solubility in methanol 0.344 g/100 mL (25 °C)
+55.0·10−6 cm3/mol
Structure
orthorhombic (hexagonal above 413 °C)
Thermochemistry
142.1 J/mol K
174.5 J/mol K
Std enthalpy of
formation
fH298)
−1329 kJ/mol
-1232 kJ/mol
Hazards
GHS labelling:
GHS05: CorrosiveGHS06: ToxicGHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard
Danger
H301, H312, H314, H317, H330, H334, H340, H350, H360, H372, H410
P201, P202, P260, P261, P264, P270, P271, P272, P273, P280, P281, P284, P285, P301+P310, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P304+P341, P305+P351+P338, P308+P313, P310, P312, P314, P320, P321, P322, P330, P333+P313, P342+P311, P363, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability (yellow): no hazard codeSpecial hazard OX: Oxidizer. E.g. potassium perchlorate
3
0
Flash point Non-flammable
Safety data sheet (SDS) ICSC 1370
Related compounds
Other anions
Sodium dichromate
Sodium molybdate
Sodium tungstate
Other cations
Potassium chromate
Calcium chromate
Barium chromate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Sodium chromate is the inorganic compound with the formula Na2CrO4. It exists as a yellow hygroscopic solid, which can form tetra-, hexa-, and decahydrates. It is an intermediate in the extraction of chromium from its ores.

Production and reactivity

It is obtained on a vast scale by roasting chromium ores in air in the presence of sodium carbonate:

2Cr2O3 + 4 Na2CO3 + 3 O2 → 4 Na2CrO4 + 4 CO2

This process converts the chromium into a water-extractable form, leaving behind iron oxides. Typically calcium carbonate is included in the mixture to improve oxygen access and to keep silicon and aluminium impurities in an insoluble form. The process temperature is typically around 1100 °C.[1] For lab and small scale preparations a mixture of chromite ore, sodium hydroxide and sodium nitrate reacting at lower temperatures may be used (even 350 C in the corresponding potassium chromate system).[2] Subsequent to its formation, the chromate salt is converted to sodium dichromate, the precursor to most chromium compounds and materials.[3] The industrial route to chromium(III) oxide involves reduction of sodium chromate with sulfur.

Acid-base behavior

It converts to sodium dichromate when treated with acids:

2 Na2CrO4 + 2HCl → Na2Cr2O7 + 2NaCl + H2O

Further acidification affords chromium trioxide:

Na2CrO4 + H2SO4 → CrO3 + Na2SO4 + H2O

Uses

Aside from its central role in the production of chromium from its ores, sodium chromate is used as a corrosion inhibitor in the petroleum industry.[3] It is also a dyeing auxiliary in the textile industry.[3] It is a diagnostic pharmaceutical in determining red blood cell volume.[4]

In organic chemistry, sodium chromate is used as an oxidant, converting primary alcohols to

ketones.[5]
Sodium chromate is a strong oxidizer.

See also

Safety

As with other

corrosive and exposure may produce severe eye damage or blindness.[7]
Human exposure further encompasses impaired fertility, heritable genetic damage and harm to unborn children.

References

Further reading