Sodium dodecyl sulfate

Source: Wikipedia, the free encyclopedia.
Sodium lauryl sulfate
Space-filling model of the sodium dodecyl sulfate crystal
Space-filling model of the dodecyl sulfate ion
Names
Preferred IUPAC name
Sodium dodecyl sulfate
Other names
Sodium monododecyl sulfate; Sodium lauryl sulfate; Sodium monolauryl sulfate; Sodium dodecanesulfate; dodecyl alcohol, hydrogen sulfate, sodium salt; n-dodecyl sulfate sodium; Sulfuric acid monododecyl ester sodium salt
Identifiers
3D model (
JSmol
)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard
100.005.263 Edit this at Wikidata
E number E487 (thickeners, ...)
UNII
  • InChI=1S/C12H26O4S.Na/c1-2-3-4-5-6-7-8-9-10-11-12-16-17(13,14)15;/h2-12H2,1H3,(H,13,14,15);/q;+1/p-1 checkY
    Key: DBMJMQXJHONAFJ-UHFFFAOYSA-M checkY
  • CCCCCCCCCCCCOS(=O)([O-])=O.[Na+]
Properties
C12H25NaSO4
Molar mass 288.372 g/mol
Appearance white or cream-colored solid
Odor odorless
Density 1.01 g/cm3
Melting point 206 °C (403 °F; 479 K)
Surface tension:
8.2 mM at 25 °C[1]
1.461
Pharmacology
A06AG11 (WHO)
Hazards
Lethal dose or concentration (LD, LC):
1288 mg/kg (rat, oral)
Related compounds
Other anions
Sodium laureth sulfate
Sodium myreth sulfate
Other cations
Ammonium lauryl sulfate
Potassium lauryl sulfate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Sodium dodecyl sulfate (SDS) or sodium lauryl sulfate (SLS), sometimes written sodium laurilsulfate, is an

amphiphilic properties that make it useful as a detergent. SDS is also component of mixtures produced from inexpensive coconut and palm oils. SDS is a common component of many domestic cleaning, personal hygiene and cosmetic, pharmaceutical, and food products, as well as of industrial and commercial cleaning and product formulations.[2]

Physicochemical properties

Bottle of 20% sodium dodecyl sulfate in distilled water for use in the laboratory

The critical micelle concentration (CMC) in water at 25 °C is 8.2 mM,[1] and the aggregation number at this concentration is usually considered to be about 62.[3] The micelle ionization fraction (α) is around 0.3 (or 30%).[4]

Applications

Cleaning and hygiene

SDS is mainly used in detergents for laundry with many cleaning applications.[5] It is a highly effective surfactant and is used in any task requiring the removal of oily stains and residues. For example, it is found in higher concentrations with industrial products including engine degreasers, floor cleaners, and car exterior cleaners.[citation needed]

It is a component in hand soap, toothpastes, shampoos, shaving creams, and bubble bath formulations, for its ability to create a foam (lather), for its surfactant properties, and in part for its thickening effect.[6]

Food additive

Sodium dodecyl sulfate, appearing as its synonym sodium lauryl sulfate (SLS), is considered a generally recognized as safe (GRAS) ingredient for food use according to the USFDA (21 CFR 172.822).[7] It is used as an emulsifying agent and whipping aid.[8] As an emulsifier in or with egg whites the United States Code of Federal Regulations require that it must not exceed 1,000 parts per million (0.1%) in egg white solids or 125 parts per million (0.0125%) in frozen or liquid egg whites and as a whipping agent for the preparation of marshmallows it must not exceed 0.5% of the weight of gelatine.[9] SLS is reported to temporarily diminish perception of sweetness.[10]

Laboratory applications

SDS is used in cleaning procedures,[11] and is commonly used as a component for lysing cells during RNA extraction or DNA extraction, inhibiting the activity of nucleases, enzymes that can degrade DNA, protecting the integrity of the isolated genetic material, and for denaturing proteins in preparation for electrophoresis in the SDS-PAGE technique.[12]

Denaturation of a protein using SDS

In the case of SDS-PAGE, the compound works by disrupting non-covalent bonds in the proteins, and so denaturing them, i.e. causing the protein molecules to lose their native conformations and shapes. By binding to proteins at a ratio of one SDS molecule per 2 amino acid residues, the negatively charged detergent provides all proteins with a similar net negative charge and therefore a similar charge-to-mass ratio.[13] In this way, the difference in mobility of the polypeptide chains in the gel can be attributed solely to their length as opposed to both their native charge and shape.[13][14] This separation based on the size of the polypeptide chain simplifies the analysis of protein molecules.[15]

Pharmaceutical applications

Sodium lauryl sulfate is a widely used in the pharmaceutical field as an ionic solubilizer and emulsifier that is suitable for applications in liquid dispersions, solutions, emulsions and micro emulsions, tablets, foams and semi-solids such as creams, lotions and gels.[16] Additionally, SLS aids in tablet wettability, as well as lubrication during manufacturing. Brand names of pharma-grade SLS include Kolliphor SLS and Kolliphor SLS Fine.[17]

Miscellaneous applications

SLS is used in an improved technique for preparing brain tissues for study by optical microscopy. The technique, which has been branded as CLARITY, was the work of Karl Deisseroth and coworkers at

light scattering with minimal protein loss, rendering the tissue quasi-transparent.[18][19]

Along with

sodium dodecylbenzene sulfonate and Triton X-100, aqueous solutions of SDS are popular for dispersing or suspending nanotubes, such as carbon nanotubes.[20]

Other uses

SLS has been proposed as a potentially effective topical microbicide, for intravaginal use, to inhibit and possibly prevent infection by various enveloped and non-enveloped viruses such as the herpes simplex viruses, HIV, and the Semliki Forest virus.[21][22]

Liquid membranes formed from SDS in water have been demonstrated to work as unusual particle separators.[23] The device acts as a reverse filter, allowing large particles to pass while capturing smaller particles.

Production

SDS is

amphiphiles, when produced from coconut oil, and is known as sodium coco sulfate (SCS).[26] SDS is available commercially in powder, pellet, and other forms (each differing in rates of dissolution), as well as in aqueous solutions of varying concentrations.[citation needed
]

Safety

SDS is not

detergents, sodium lauryl sulfate removes oils from the skin, and can cause skin and eye irritation.[citation needed] It has been shown to irritate the skin of the face, with prolonged and constant exposure (more than an hour) in young adults.[29] SDS may worsen skin problems in individuals with chronic skin hypersensitivity, with some people being affected more than others.[30][31][32]

Oral concerns

SDS is a common ingredient in toothpastes due to its low cost,[33] its lack of impact on taste,[33] and its desirable action as a foaming agent.[33]

VSCs

SDS may reduce the amount of

volatile sulfur compounds (VSCs) in the mouth.[34] A series of small crossover studies (25–34 patients) have supported the efficacy of SLS in the reduction of VSCs, and its related positive impact on breath malodor, although these studies have been generally noted to reflect technical challenges in the control of study design variables.[34]

Dry mouth

Primary sources from the group of Irma Rantanen at University of Turku, Finland claim that SLS-containing pastes cause more dry mouth (xerostomia) than their proposed alternative. However, a 2011 Cochrane review of these studies, and of the more general area, concludes that there "is no strong evidence... that any topical therapy is effective for relieving the symptom of dry mouth."[35]

Mouth ulceration

A safety concern has been raised on the basis of several studies regarding the effect of toothpaste SDS on

aphthous ulcers (more specifically, mouth ulcers or "canker sores"), commonly referred to as canker or white sores.[33] According to the NHS, SLS is a cause for concern for mouth ulcers.[36][37] As Lippert notes, of 2013, "very few... marketed toothpastes contain a surfactant other than SLS [SDS]," and leading manufacturers continue to formulate their produce with SDS.[33]

See also

References

  1. ^ a b P. Mukerjee, P. & Mysels, K. J. (1971), "Critical Micelle Concentration of Aqueous Surfactant Systems," NSRDS-NBS 36, Washington, DC: US. Government Printing Office.[full citation needed][page needed]
  2. .
  3. .
  4. .
  5. ]
  6. ^ "Household Products Database – Health and Safety Information on Household Products". nih.gov. Archived from the original on 12 June 2018. Retrieved 13 March 2016.
  7. ^ "21 CFR 172.822 – Sodium lauryl sulfate". gpo.gov. Retrieved 13 March 2016.
  8. ^ Igoe, R. S. (1983). Dictionary of food ingredients. New York: Van Nostrand Reinhold Co.[page needed]
  9. ^ "21 CFR 172.822 – Sodium lauryl sulfate". Retrieved 19 August 2021.
  10. .
  11. ^ "Sodium Lauryl Sulfate – National Library of Medicine HSDB Database". toxnet.nlm.nih.gov. Retrieved 2017-02-16.
  12. ^ The acronym expands to "sodium dodecyl sulfate-polyacrylamide gel electrophoresis."
  13. ^
    OCLC 794620168
    .
  14. .
  15. .
  16. ^ "Pharmaceuticals". pharmaceutical.basf.com. Retrieved 2021-04-27.
  17. ^ "Kolliphor® SLS". pharmaceutical.basf.com. Retrieved 2021-04-27.
  18. better source needed
    ]
  19. PMID 23575631
    . Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable.
  20. .
  21. .
  22. .
  23. .
  24. .
  25. ^ Gloxhuber, C., & Kunster, K. (1992). Anionic Surfactants: Biochemistry, toxicology, dermatology (2nd ed.). New York.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link)[page needed]
  26. ^ US 3,491,033, "Process of making solid foams from polymer emulsions", published 1970 
  27. S2CID 34123578
    . Retrieved 13 March 2016. [Quoting:] Carcinogenesis. A one-year chronic oral study using beagles showed that Sodium Lauryl Sulfate at concentrations up to 2% in the diet was not tumorigenic or carcinogenic. [p. 157] / Summary… In mutagenesis studies, rats fed 1.13% and 0.56% Sodium Lauryl Sulfate in the diet for 90 days produced no more chromosomal aberrations or clastogenic effects than did a control diet. [p. 175]. / Conclusion. Sodium Lauryl Sulfate and Ammonium Lauryl Sulfate appear to be safe in formulations designed for discontinuous, brief use followed by thorough rinsing from the surface of the skin. In products intended for prolonged contact with skin, concentrations should not exceed 1%. [p. 176.].
  28. ^ Wilma F. Bergfeld, Chair, and the Cosmetic Ingredient Review (CIR) program Expert Panel (2005). "Final report on the safety assessment of sodium lauryl sulfate and ammonium lauryl sulfate" (PDF). Int. J. Toxicol. 24 (1): 1–102, esp. 89–98. Retrieved 13 March 2016. [Quoting:] Sodium Lauryl Sulfate and Ammonium Lauryl Sulfate appear to be safe in formulations designed for discontinuous, brief use followed by thorough rinsing from the surface of the skin. In products intended for prolonged contact with skin, concentrations should not exceed 1%… New studies confirmed the irritant properties of these ingredients and reinforced the concentration limit of 1% or leave-on uses established by the [earlier] Panel. [p. 89] / The available studies that looked for carcinogenesis failed to find evidence that Ammonium Lauryl Sulfate are [sic.] carcinogenic. None of the available data suggested that SLS or Ammonium Lauryl Sulfate could be carcinogenic. Despite assertions to the contrary on the Internet, the carcinogenicity of these ingredients is only a rumor. [pp. 89ff]{{cite journal}}: CS1 maint: multiple names: authors list (link).
  29. S2CID 35890797
    .
  30. .
  31. .
  32. .
  33. ^ .
  34. ^ .
  35. PMID 22161442. [Quoting abstract:] There is no strong evidence from this review that any topical therapy is effective for relieving the symptom of dry mouth. See Rantanen, et al. (2003) J. Contemp. Dent. Pract. 4(2):11–23, [1], and Rantanen, et al. (2003) Swed. Dent. J. 27(1):31–34, [2]
    , referenced therein.
  36. ^ "Mouth ulcers". NHS. 18 October 2017. do not use toothpaste containing sodium lauryl sulphate
  37. PMID 7825393
    .

External links