Sonification

Source: Wikipedia, the free encyclopedia.
Video of air pollution data from Beijing being conveyed as a piece of music

Sonification is the use of non-speech

visualization
techniques.

For example, the rate of clicking of a Geiger counter conveys the level of radiation in the immediate vicinity of the device.

Though many experiments with data sonification have been explored in forums such as the International Community for Auditory Display (ICAD), sonification faces many challenges to widespread use for presenting and analyzing data. For example, studies show it is difficult, but essential, to provide adequate context for interpreting sonifications of data.[1][2] Many sonification attempts are coded from scratch due to the lack of flexible tooling for sonification research and data exploration.[3]

History

The Geiger counter, invented in 1908, is one of the earliest and most successful applications of sonification. A Geiger counter has a tube of low-pressure gas; each particle detected produces a pulse of current when it ionizes the gas, producing an audio click. The original version was only capable of detecting alpha particles. In 1928, Geiger and Walther Müller (a PhD student of Geiger) improved the counter so that it could detect more types of ionizing radiation.

In 1913, Dr.

Edmund Fournier d'Albe of University of Birmingham invented the optophone, which used selenium photosensors to detect black print and convert it into an audible output.[4]
A blind reader could hold a book up to the device and hold an apparatus to the area she wanted to read. The optophone played a set group of notes: g c' d' e' g' b' c e. Each note corresponded with a position on the optophone's reading area, and that note was silenced if black ink was sensed. Thus, the missing notes indicated the positions where black ink was on the page and could be used to read.

Pollack and Ficks published the first perceptual experiments on the transmission of information via auditory display in 1954.[5] They experimented with combining sound dimensions such as timing, frequency, loudness, duration, and spatialization and found that they could get subjects to register changes in multiple dimensions at once. These experiments did not get into much more detail than that, since each dimension had only two possible values.

In 1970,

Columbia-Princeton Electronic Music Center. As the title suggests, the composition's electronic sounds were synthesized from data from the earth's magnetic field. As such, it may well be the first sonification of scientific data for artistic, rather than scientific, purposes.[6]

Bell Laboratories did the earliest work on auditory graphing in their "Auditory Data Inspection" technical memorandum in 1974.[7]
They augmented a scatterplot using sounds that varied along frequency, spectral content, and amplitude modulation dimensions to use in classification. They did not do any formal assessment of the effectiveness of these experiments.[8]

In 1976, philosopher of technology, Don Ihde, wrote, "Just as science seems to produce an infinite set of visual images for virtually all of its phenomena--atoms to galaxies are familiar to us from coffee table books to science magazines; so 'musics,' too, could be produced from the same data that produces visualizations."[9] This appears to be one of the earliest references to sonification as a creative practice.

In early 1982 Sara Bly of the University of California, Davis, released two publications - with examples - of her work on the use of computer-generated sound to present data. At the time, the field of scientific visualization was gaining momentum. Among other things, her studies and the accompanying examples compared the properties between visual and aural presentation, demonstrating that "Sound offers and enhancement and an alternative to graphic tools." Her work provides early experiment-based data to help inform matching appropriate data representation to type and purpose. [10] [11]

Also in the 1980s,

pulse oximeters came into widespread use. Pulse oximeters can sonify oxygen concentration of blood by emitting higher pitches for higher concentrations. However, in practice this particular feature of pulse oximeters may not be widely utilized by medical professionals because of the risk of too many audio stimuli in medical environments.[12]

In 1992, the International Community for Auditory Display (ICAD) was founded by Gregory Kramer as a forum for research on auditory display which includes data sonification. ICAD has since become a home for researchers from many different disciplines interested in the use of sound to convey information through its conference and peer-reviewed proceedings.[13]

In May 2022, NASA reported the sonification (converting astronomical data associated with pressure waves into sound) of the black hole at the center of the Perseus galaxy cluster.[14][15]

Some existing applications and projects

Sonification techniques

Many different components can be altered to change the user's perception of the sound, and in turn, their perception of the underlying information being portrayed. Often, an increase or decrease in some level in this information is indicated by an increase or decrease in pitch, amplitude or tempo, but could also be indicated by varying other less commonly used components. For example, a stock market price could be portrayed by rising pitch as the stock price rose, and lowering pitch as it fell. To allow the user to determine that more than one stock was being portrayed, different timbres or brightnesses might be used for the different stocks, or they may be played to the user from different points in space, for example, through different sides of their headphones.

Many studies have been undertaken to try to find the best techniques for various types of information to be presented, and as yet, no conclusive set of techniques to be used has been formulated. As the area of sonification is still considered to be in its infancy, current studies are working towards determining the best set of sound components to vary in different situations.

Several different techniques for auditory rendering of data can be categorized:

An alternative approach to traditional sonification is "sonification by replacement", for example Pulsed Melodic Affective Processing (PMAP).[53][54][55] In PMAP rather than sonifying a data stream, the computational protocol is musical data itself, for example MIDI. The data stream represents a non-musical state: in PMAP an affective state. Calculations can then be done directly on the musical data, and the results can be listened to with the minimum of translation.

See also

References

  1. ^ .
  2. .
  3. ^ Flowers, J. H. (2005), "Thirteen years of reflection on auditory graphing: Promises, pitfalls, and potential new directions" (PDF), in Brazil, Eoin (ed.), Proceedings of the 11th International Conference on Auditory Display, pp. 406–409
  4. Proceedings of the Royal Society of London
  5. ^ Dodge, C. (1970), The Earth's Magnetic Field., vol. Nonesuch Records-H-71250
  6. ^ Chambers, J. M. and Mathews, M. V. and Moore, F. R. (1974), "Auditory Data Inspection", Technical Memorandum, AT&T Bell Laboratories, 74-1214-20{{citation}}: CS1 maint: multiple names: authors list (link)
  7. ^ Frysinger, S. P. (2005), "A brief history of auditory data representation to the 1980s" (PDF), in Brazil, Eoin (ed.), Proceedings of the 11th International Conference on Auditory Display, pp. 410–413
  8. .
  9. ^ Craven, R M; McIndoe, A K (1999), "Continuous auditory monitoring—how much information do we register?" (PDF), British Journal of Anaesthesia, 83 (5): 747–749, ]
  10. ^ Kramer, G.; Walker, B.N. (2005), "Sound science: Marking ten international conferences on auditory display", ACM Transactions on Applied Perception, 2 (4): 383–388,
    S2CID 1187647
  11. ^ Watzke, Megan; Porter, Molly; Mohon, Lee (4 May 2022). "New NASA Black Hole Sonifications with a Remix". NASA. Retrieved 11 May 2022.
  12. ^ Overbye, Dennis (7 May 2022). "Hear the Weird Sounds of a Black Hole Singing - As part of an effort to "sonify" the cosmos, researchers have converted the pressure waves from a black hole into an audible … something". The New York Times. Retrieved 11 May 2022.
  13. .
  14. .
  15. ^ LIGO Gravitational Wave Chirp, archived from the original on 2021-12-22, retrieved 2021-09-15
  16. S2CID 9492137
    .
  17. ^ Thomas Hermann, and Andy Hunt. The Importance of Interaction in Sonification. Proceedings of ICAD Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6–9, 2004. Available: online
  18. ^ Sandra Pauletto and Andy Hunt. A Toolkit for Interactive Sonification. Proceedings of ICAD Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6–9, 2004. Available: online.
  19. PMID 28317848
    .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. ^ .
  28. ^ . Retrieved 24 January 2019.
  29. .
  30. ^ "SPDF - Sonification". jcms.org.uk/. 2005-11-13. Archived from the original on 2005-11-13. Retrieved 2021-09-15.
  31. S2CID 23156157
    .
  32. .
  33. .
  34. .
  35. ^ Polli, Andrea (July 6–9, 2004). ATMOSPHERICS/WEATHER WORKS: A MULTI-CHANNEL STORM SONIFICATION PROJECT (PDF). ICAD 04-Tenth Meeting of the International Conference on Auditory Display. Archived from the original (PDF) on 2021-07-11.
  36. ^ Yang, Jiajun; Hermann, Thomas (June 20–23, 2017). PARALLEL COMPUTING OF PARTICLE TRAJECTORY SONIFICATION TO ENABLE REAL-TIME INTERACTIVITY (PDF). The 23rd International Conference on Auditory Display.
  37. ^ "Justin Joque". justinjoque.com. Retrieved 2019-05-21.
  38. S2CID 7505236
    .
  39. .
  40. ^ CURAT. "Games and Training for Minimally Invasive Surgery". CURAT Project. University of Bremen. Retrieved 15 July 2020.
  41. ^ Winkler, Helena; Schade, Eve Emely Sophie; Kruesilp, Jatawan; Ahmadi, Fida. "Tiltification – The Spirit Level Using Sound". Tiltification. University of Bremen. Retrieved 21 April 2021.
  42. ^ Silberman, S. (February 6, 2012). “Inside the Mind of a Synaesthete”. PLOS ONE.
  43. ^ Weidenfeld, J. September 28, 2013. "10 Cool Ways To Create Music With Technology". Listserve.
  44. ^ Byrne, M. February 14, 2012. “With Images for Your Earholes, Sonified Wins Augmented Reality with Custom Synesthesia”. Vice / Motherboard
  45. ^ "PriceSquawk". pricesquawk.com.
  46. ^ Barrass S. (2012) Digital Fabrication of Acoustic Sonifications, Journal of the Audio Engineering Society, September 2012. online
  47. ^ Barrass, S. and Best, G. (2008). Stream-based Sonification Diagrams. Proceedings of the 14th International Conference on Auditory Display, IRCAM Paris, 24–27 June 2008. online
  48. Scan: Journal of Media Arts Culture, Macquarie University
    .
  49. .
  50. ^ "Towards Harmonic Extensions of Pulsed Melodic Affective Processing – Further Musical Structures for Increasing Transparency in Emotional Computation" (PDF). 2014-11-11. Retrieved 2017-06-05.
  51. ^ "A Hybrid Computer Case Study for Unconventional Virtual Computing". 2015-06-01. Retrieved 2017-06-05.

External links