Spillover infection

Source: Wikipedia, the free encyclopedia.
(Redirected from
Spillover event
)

Spillover infection, also known as pathogen spillover and spillover event, occurs when a reservoir population with a high pathogen prevalence comes into contact with a novel host population. The pathogen is transmitted from the reservoir population and may or may not be transmitted within the host population.[1] Due to climate change and land use expansion, the risk of viral spillover is predicted to significantly increase.[2][3]

Spillover zoonoses

Ebola virus
.

Spillover is a common event; in fact, more than two-thirds of human viruses are

HIV virus resulting in the AIDS epidemic and with SARS-CoV-2 resulting in the COVID-19 pandemic.[5]

If the history of mutual adaptation is long enough, permanent host-microbe associations can be established resulting in co-evolution, and even permanent integration of the microbe genome with the human genome, as is the case of endogenous viruses.

mammals are the main source of zoonotic agents for humans. For example, in the case of the Ebola virus, fruit bats are the hypothesized zoonotic agent.[7]

During the late 20th century, zoonotic spillover increased as the environmental impact of agriculture promoted increased land use and deforestation, changing wildlife habitat. As species shift their geographic range in response to climate change, the risk of zoonotic spillover is predicted to substantially increase, particularly in tropical regions that are experiencing rapid warming.[8] As forested areas of land are cleared for human use, there is increased proximity and interaction between wild animals and humans thereby increasing the potential for exposure.[9]

Intraspecies spillover

The bumblebee is a potential reservoir for several pollinator parasites.

Commercially bred

bumblebees used to pollinate greenhouses can be reservoirs for several pollinator parasites including the protozoans Crithidia bombi, and Apicystis bombi,[10] the microsporidians Nosema bombi and Nosema ceranae,[10][11] plus viruses such as Deformed wing virus and the tracheal mites Locustacarus buchneri.[11] Commercial bees that escape the greenhouse environment may then infect wild bee populations. Infection may be via direct interactions between managed and wild bees or via shared flower use and contamination.[12][13] One study found that half of all wild bees found near greenhouses were infected with C. bombi. Rates and incidence of infection decline dramatically the further away from the greenhouses where the wild bees are located.[14][15] Instances of spillover between bumblebees are well documented across the world, particularly in Japan, North America, and the United Kingdom.[16][17]

Examples of Spillover Zoonosis
Disease Reservoir
Hepatitis E Wild Boar[10]
Ebola Fruit Bats[11]
HIV/AIDS Chimpanzee[12]
COVID-19 Bats[28]

Causes of spillover

Zoonotic spillover is a relatively uncommon but incredibly dangerous natural phenomenon—as is evidenced by the Ebola epidemic and Coronavirus pandemic. For zoonotic spillover to occur, several important factors have to occur in tandem.[1] Such factors include altered ecological niches, epidemiological susceptibility, and the natural behavior of pathogens and novel host or spillover host species.[29] By suggesting that the natural behavior of pathogens and host species impacts zoonotic spillover, simple Darwinian theories are being referenced. As with all species, a pathogen's main goal is to survive. When a stressor puts pressure on the survival of the pathogenic species, it will have to adapt to said stressor in order to survive.[30] For example, the ecological niche of the novel host may be subject to a lack of food which leads to a decrease in the novel host population. In order for a virus to replicate, it must invade a eukaryotic organism.[31] When the novel eukaryotic organism is not available for the virus to infect, it must jump to another host.[30] In order for the virus to make the jump to the spillover host, the spillover host must be epidemiologically susceptible to this virus. Although it is not well understood what makes one spillover host "better" than another host, it is known that the susceptibility has to do with the shedding rate of the virus, how well the virus survives and moves while not within a host, the genotypic similarities between the novel and spillover hosts, and the behavior of the spillover host that leads to contact with a high dose of the virus.[1]

See also

References

  1. ^
    PMID 22966141
    .
  2. .
  3. ^ Ebola. (2014). National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Department of Health & Human Services, CDC.
  4. S2CID 3937352
    .
  5. ^ .
  6. .
  7. .
  8. .
  9. .
  10. ^ .
  11. ^ .
  12. ^ a b "About HIV/AIDS | HIV Basics | HIV/AIDS | CDC". www.cdc.gov. 2022-06-30. Retrieved 2022-12-08.
  13. PMID 26246556
    .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. . The current weight of evidence suggests that SARS-CoV-2, or its progenitor, probably emerged in humans from a zoonotic source in Wuhan, China, where it was first identified in 2019. Although evidence on the origins of SARS-CoV-2 are inconclusive, bats have been suggested to be the most probable evolutionary source for the virus."
  20. . The pandemic of Coronavirus disease (COVID-19) has highlighted bats as reservoirs of coronaviruses that cause severe respiratory diseases in humans and, frequently, in other animals. However, despite the spillover events of SARS-CoV and MERS-CoV, the implication of bats as natural reservoirs of the ancient virus of SARS-CoV-2 is, to date, unconfirmed, as only closely related SARS-like viruses have been detected by genomic sequencing and little is known about the mechanisms of host switch from bats to humans.
  21. .
  22. ^ .
  23. .
  24. .
  25. .
  26. . It is almost certain that the virus originated in bats and crossed species to humans either directly or indirectly via intermediary hosts.
  27. . The increasing scientific evidence concerning the origins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is most consistent with a zoonotic origin and a spillover pathway from wildlife to people via wildlife farming and the wildlife trade.
  28. pangolins[24][25]) before spillover into humans.[26][27]
  29. .
  30. ^ .

External links