Spirulina (dietary supplement)

Source: Wikipedia, the free encyclopedia.
Spirulina tablets

Spirulina is a biomass of cyanobacteria (blue-green algae) that can be consumed by humans and animals. The three species are Arthrospira platensis, A. fusiformis, and A. maxima.

Cultivated worldwide,

whole food.[1] It is also used as a feed supplement in the aquaculture, aquarium, and poultry industries.[2]

Etymology and ecology

Spirulina powder at 400×, unstained wet mount

The species A. maxima and A. platensis were once classified in the genus Spirulina. The common name, spirulina, refers to the dried biomass of A. platensis,[3] which belongs to photosynthetic bacteria that cover the groups Cyanobacteria and Prochlorophyta. Scientifically, a distinction exists between spirulina and the genus Arthrospira. Species of Arthrospira have been isolated from alkaline brackish and saline waters in tropical and subtropical regions. Among the various species included in the genus Arthrospira, A. platensis is the most widely distributed and is mainly found in Africa, but also in Asia. A. maxima is believed to be found in California and Mexico.[4] The term spirulina remains in use for historical reasons.[2]

Arthrospira species are free-floating, filamentous cyanobacteria characterized by

cylindrical, multicellular trichomes in an open left-handed helix. They occur naturally in tropical and subtropical lakes with high pH and high concentrations of carbonate and bicarbonate.[5] A. platensis occurs in Africa, Asia, and South America, whereas A. maxima is confined to Central America.[2] Most cultivated spirulina is produced in open-channel raceway ponds, with paddle wheels used to agitate the water.[5]

Spirulina thrives at a pH around 8.5 and above and a temperature around 30 °C (86 °F). They are

autotrophic, meaning that they are able to make their own food, and do not need a living energy or organic carbon source. A nutrient feed for growing it[6]
is:

Spirulina(dried)
Nutritional value per 100 g (3.5 oz)
Energy1,213 kJ (290 kcal)
23.9 g
Sugars3.1 g
Dietary fiber3.6 g
7.72 g
Saturated2.65 g
Monounsaturated0.675 g
Polyunsaturated2.08 g
57.47 g
Tryptophan0.929 g
Threonine2.97 g
Isoleucine3.209 g
Leucine4.947 g
Lysine3.025 g
Methionine1.149 g
Cystine0.662 g
Phenylalanine2.777 g
Tyrosine2.584 g
Valine3.512 g
Arginine4.147 g
Histidine1.085 g
Alanine4.515 g
Aspartic acid5.793 g
Glutamic acid8.386 g
Glycine3.099 g
Proline2.382 g
Serine2.998 g
Niacin (B3)
80%
12.82 mg
Pantothenic acid (B5)
70%
3.48 mg
Vitamin B6
21%
0.364 mg
Folate (B9)
24%
94 μg
Vitamin B12
0%
0 μg
Choline
12%
66 mg
Vitamin C
11%
10.1 mg
Vitamin D
0%
0 IU
Vitamin E
33%
5 mg
Vitamin K
21%
25.5 μg
MineralsQuantity
%DV
Calcium
9%
120 mg
Iron
158%
28.5 mg
Magnesium
46%
195 mg
Manganese
83%
1.9 mg
Phosphorus
9%
118 mg
Potassium
45%
1363 mg
Sodium
46%
1048 mg
Zinc
18%
2 mg
Other constituentsQuantity
Water4.68 g

Percentages estimated using US recommendations for adults,[7] except for potassium, which is estimated based on expert recommendation from the National Academies.[8]

Historical use

Spirulina was a food source for the

Mesoamericans until the 16th century; the harvest from Lake Texcoco in Mexico and subsequent sale as cakes were described by one of Cortés's soldiers.[9][10] The Aztecs called it tecuitlatl.[5]

Spirulina was found in abundance at Lake Texcoco by French researchers in the 1960s, but no reference to its use by the Aztecs as a daily food source was made after the 16th century, probably because of the draining of the surrounding lakes for agriculture and urban development.[5] The topic of tecuitlatl, which was discovered in 1520, was not mentioned again until 1940, when the Belgian phycologist Pierre Dangeard mentioned a cake called dihe consumed by the Kanembu tribe, who harvest it from Lake Chad in the African nation of Chad. Dangeard studied the dihe samples and found it to be a dried puree of the spring form of the blue-green algae from the lake. The dihe is used to make broths for meals, and also sold in markets. The spirulina is harvested from small lakes and ponds around Lake Chad.[11]

During 1964 and 1965, the botanist Jean Leonard confirmed that dihe is made up of spirulina, and later studied a bloom of algae in a sodium hydroxide production facility. As a result, the first systematic and detailed study of the growth requirements and physiology of spirulina was performed as a basis for establishing large-scale production in the 1970s.[2][4]

Food and nutrition

Spirulina is being investigated to address

space flight or Mars missions.[12][13] Its advantage for food security is that it needs less land and water than livestock to produce protein and energy.[12]

Dried spirulina contains 5% water, 24% carbohydrates, 8% fat, and about 60% (51–71%) protein.[14][15]

As seen in the table of nutritional value, provided in its typical supplement form as a dried powder, a 100-g amount of spirulina supplies 290

gamma-linolenic acid,[16][17] linoleic acid, stearidonic acid,[18] eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid.[19] In contrast to those 2003 estimates (of DHA and EPA each at 2 to 3% of total fatty acids), 2015 research indicated that spirulina products "contained no detectable omega-3 fatty acids" (less than 0.1%, including DHA and EPA).[20]

Vitamin B12

Spirulina contains no

American Dietetic Association stated that spirulina is not a reliable source of active vitamin B12.[23] The medical literature similarly advises that spirulina is unsuitable as a source of B12.[22][24]

Animals and aquaculture

Various studies on spirulina as an alternative feed for animal and aquaculture have been done.[4] Spirulina can be fed up to 10% for poultry [25] and less than 4% for quail.[26] An increase in spirulina content up to 40 g/kg (0.64 oz/lb) for 16 days in 21-day-old broiler male chicks resulted in yellow and red coloration of flesh, possibly due to the accumulation of the yellow pigment zeaxanthin.[27] Pigs[28] and rabbits[29] can receive up to 10% of the feed and increase in the spirulina content in cattle resulted in increase in milk yield and weight.[30] Spirulina has been established[4] as an alternative feedstock and immune booster for bigmouth buffalo,[30] milk fish,[31] cultured striped jack,[32] carp,[33][34] red sea bream,[35] tilapia,[36] catfish,[37] yellow tail,[38] zebrafish,[39] shrimp,[40][41] and abalone,[42] and up to 2% spirulina per day in aquaculture feed can be safely recommended.[4]

Research

According to the U.S. National Institutes of Health, scientific evidence is insufficient to recommend spirulina supplementation for any human condition, and more research is needed to clarify whether consumption yields any benefits.[1] Administration of spirulina has been investigated as a way to control glucose in people with diabetes, but the European Food Safety Authority rejected those claims in 2013.[43] Spirulina has been studied as a potential nutritional supplement for adults and children affected by HIV, but there was no conclusive effect on risk of death, body weight, or immune response.[44][45]

Risks

Spirulina may have

blood clotting.[1]

Safety and toxicology

Spirulina is a

liver damage may occur.[1] The effects of chronic exposure to even low levels of microcystins are a concern due to the risk of toxicity to several organ systems.[1][47]

These toxic compounds are not produced by spirulina itself,[48] but can occur if spirulina batches are contaminated with other, toxin-producing, blue-green algae. Because the U.S. considers spirulina a dietary supplement, its government does not regulate its production and enforces no safety standards for its production or purity.[47] The U.S. National Institutes of Health describes spirulina supplements as "possibly safe", provided they are free of microcystin contamination, but "likely unsafe" (especially for children) if contaminated.[1] Given the lack of regulatory standards in the U.S., some public-health researchers have raised the concern that consumers cannot be certain that spirulina and other blue-green algae supplements are free of contamination.[47] In 1999, Health Canada found that one sample of spirulina was microcystin-free. ("...0/10 samples of Spirulina contained microcystins.")[49]

Heavy-metal contamination of spirulina supplements has also raised concern. The Chinese

State Food and Drug Administration reported that lead, mercury, and arsenic contamination was widespread in spirulina supplements marketed in China.[50] One study reported the presence of lead up to 5.1 ppm in a sample from a commercial supplement.[4] Spirulina doses of 10 to 19 grams per day over several months have been used safely.[1]

Safety issues for certain target groups

Like all protein-rich foods, spirulina contains the essential amino acid phenylalanine (2.6–4.1 g/100 g),[5] which should be avoided by people who have phenylketonuria, a rare genetic disorder that prevents the body from metabolizing phenylalanine, which then builds up in the brain, causing damage.[51]

Spirulina contaminated with microcystins has various potential toxicity, especially to children and pregnant women,[52] including liver damage, shock, and death.[1]

In 2024, a literature review on the allergic properties of spirulina was published. It was noted that to date (by July 2023), there have been 5 cases of allergy to spirulina, with 4 out of 5 cases resulting in anaphylaxis according to the classification from the World Allergy Organization's Anaphylaxis Guidance of 2020. Based on their research findings, instances of spirulina allergy are infrequently reported or identified., potentially due to spirulina's ability to inhibit mast cell degranulation, a critical component of allergic reactions.[53]

See also

References

  1. ^ a b c d e f g h i "Blue-green algae". MedlinePlus, National Library of Medicine, US National Institutes of Health. 3 August 2021. Retrieved 27 June 2023.
  2. ^ a b c d Vonshak, A. (ed.). Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. London: Taylor & Francis, 1997.[ISBN missing]
  3. ^ Gershwin, M. E.; Belay, A. (2007). Spirulina in human nutrition and health. CRC Press, USA.
  4. ^
    S2CID 87387740
    .
  5. ^ a b c d e Habib, M. Ahsan B.; Parvin, Mashuda; Huntington, Tim C.; Hasan, Mohammad R. (2008). "A Review on Culture, Production and Use of Spirulina as Food dor Humans and Feeds for Domestic Animals and Fish" (PDF). Food and Agriculture Organization of The United Nations. Retrieved November 20, 2011.
  6. .
  7. ^ United States Food and Drug Administration (2024). "Daily Value on the Nutrition and Supplement Facts Labels". Retrieved 2024-03-28.
  8. PMID 30844154.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  9. ^ Diaz Del Castillo, B. The Discovery and Conquest of Mexico, 1517–1521. London: Routledge, 1928, p. 300.
  10. .
  11. .
  12. ^ a b Riley, Tess (12 September 2014). "Spirulina: a luxury health food and a panacea for malnutrition". The Guardian, London, UK. Retrieved 22 May 2017.
  13. ^ "Ready for dinner on Mars?". European Space Agency. 13 June 2005. Retrieved 22 May 2017.
  14. S2CID 3691513
    .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. ^ . Most of the edible blue-green algae (cyanobacteria) used for human supplements predominantly contain pseudovitamin B(12), which is inactive in humans. The edible cyanobacteria are not suitable for use as vitamin B(12) sources, especially in vegans.
  23. ^ .
  24. . The results presented here strongly suggest that spirulina tablet algal health food is not suitable for use as a B12 source, especially in vegetarians.
  25. .
  26. .
  27. .
  28. ^ Nedeva, R.; Jordanova, G.; Kistanova, E.; Shumkov, K.; Georgiev, B.; Abadgieva, D.; Kacheva, D.; Shimkus, A.; Shimkine, A. (2014). "Effect of the addition of Spirulina platensis on the productivity and some blood parameters on growing pigs" (PDF). Bulgarian Journal of Agricultural Science. Retrieved February 20, 2016.
  29. doi:10.1016/j.livsci.2008.04.017. Retrieved February 20, 2016.[permanent dead link
    ]
  30. ^ .
  31. .
  32. .
  33. ^ Ayyappan, S. (1992). "Potential of Spirulina as a feed supplement for carp fry". In Seshadri, C. V.; Jeeji Bai, N. (eds.). Spirulina Ecology, Taxonomy, Technology, and Applications. National Symposium, Murugappa Chettiar Research Centre. pp. 171–172.
  34. .
  35. .
  36. .
  37. ^ Ali, Md. Shawkat (2014). Evaluation of the effects of feed attractants (Spirulina and ekangi) on growth performance, feed utilization and body composition of fingerlings of stinging catfish Heteropneustes fossilis (PhD thesis). Archived from the original on 2020-01-17. Retrieved 2016-02-21.
  38. S2CID 14643951
    .
  39. ^ Geffroy, Benjamin; Simon, Olivier (2013). "Effects of a Spirulina platensis-based diet on zebrafish female reproductive performance and larval survival rate" (PDF). Cybium. 37 (1–2): 31–38.
  40. .
  41. .
  42. .
  43. .
  44. .
  45. .
  46. ^ . Retrieved 11 March 2020.
  47. ^ .
  48. ISBN 978-1-4200-5257-2. {{cite book}}: |journal= ignored (help
    )
  49. ^ Canada, Health (2016-02-12). "Cyanobacterial Toxins in Drinking Water". aem. Retrieved 2020-02-16.
  50. Washington Post. April 10, 2012. Archived from the original
    on December 31, 2018. Retrieved April 23, 2012.
  51. ^ Robb-Nicholson, C. (2006). "By the way, doctor". Harvard Women's Health Watch. 8.
  52. PMID 23064102
    .
  53. .