Squid giant axon

Source: Wikipedia, the free encyclopedia.
Squid giant axon

The squid giant axon is the very large (up to 1.5 mm in diameter; typically around 0.5 mm)

Woods Hole.[3][4]
Squids use this system primarily for making brief but very fast movements through the water.

On the underside of the squid's body, between the head and the mantle, is a siphon through which water can be rapidly expelled by the fast contractions of the body wall muscles of the animal. This contraction is initiated by action potentials in the giant axon. Action potentials travel faster in a larger axon than a smaller one,[5] and squid have evolved the giant axon to improve the speed of their escape response. The increased radius of the squid axon decreases the internal resistance of the axon, as resistance is inversely proportional to the cross sectional area of the object. This increases the space constant (), leading to faster local depolarization and a faster action potential conduction ().[6]

In their

Alan Hodgkin and Andrew Huxley performed experiments on the squid giant axon, using the longfin inshore squid as the model organism.[7] The prize was shared with John Eccles. The large diameter of the axon provided a great experimental advantage for Hodgkin and Huxley as it allowed them to insert voltage clamp electrodes
inside the lumen of the axon.

While the squid axon is very large in diameter it is

Sepia giant axon, an influx of 3.7 pmol/cm2 (picomoles per centimeter2) of sodium is offset by a subsequent efflux of 4.3 pmol/cm2 of potassium.[8]

See also

References

  1. .
  2. – via Internet Archive.
  3. – via The Company of Biologists Ltd.
  4. .
  5. ^ Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark (2001). "Increased Conduction Velocity as a Result of Myelination". Neuroscience. 2nd edition. Sunderland, MA.{{cite book}}: CS1 maint: location missing publisher (link)
  6. S2CID 29482994
    . Retrieved August 30, 2020.
  7. .
  8. .