Stickleback

Source: Wikipedia, the free encyclopedia.

Sticklebacks
Four species of stickleback (Gasterosteidae).jpg
Four marine species of stickleback from the Atlantic Ocean coast of North America
Scientific classification e
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Scorpaeniformes
Suborder: Gasterosteoidei
Family: Gasterosteidae
Bonaparte, 1831[1]
Genera

see text

The sticklebacks are a

ray-finned fishes, the Gasterosteidae which have a Holarctic distribution in fresh, brackish and marine waters. They were thought to be related to the pipefish and seahorses but are now thought to be more closely related to the eelpouts and sculpins
.

Taxonomy

The stickleback family, Gasterosteidae, was first proposed as a family by the French

zoologist Charles Lucien Bonaparte in 1831.[1] It was long though that the sticklebacks and their relatives made up a suborder, the Gasterosteoidei, of the order Gasterostiformes with the sea horses and pipefishes making up the suborder Syngnathoidei. More recent phylogenetic work has shown that the Gaterosteoidei is more closely related to the Zoarcoidei and the Cottoidei, which means that this taxon would belong in the order Scorpaeniformes.[2] but in other phylogenetic classifications it is treated as the infraorder Gasterosteales within the suborder Cottoidei or as a sister clade to the Zoarcales in the order Zoarciformes.[3]

FishBase recognises 16 species in the family, grouped in five genera.[4] However, several of the species have a number of recognised subspecies, and the taxonomy of the family is thought to be in need of revision.

Genera

The family Gasterosteidae includes the following genera:[4]

Description

Sticklebacks are endemic to the temperate zone[5] and are most commonly found in the ocean, but some can be found in fresh water. The freshwater taxa were trapped in Europe, Asia, and North America after the Ice Age 10,000–20,000 years ago, and have evolved features different from those of the marine species.[6][7]

Sticklebacks are carnivorous, feeding on small animals such as insects, crustaceans and fish larvae.[8][9]

Sticklebacks are characterised by the presence of strong and clearly isolated spines in their dorsal fins.[10] An unusual feature of sticklebacks is that they have no scales, although some species have bony armour plates.

Sizes

The maximum size of the best-known species, the

fifteen-spined stickleback (Spinachia spinachia), which can reach 22 cm (approx. 8.7 inches).[12] Body form varies with habitat: sticklebacks in shallow lakes have developed a deep body specialized to enable feeding on benthic invertebrates, whilst those in deep oligotrophic lakes have adapted to feed on plankton and have a more slimlined body.[5]

Personality

Research has shown that Sticklebacks display distinct personality traits, specifically in the area of taking a risk, and, can be considered bold or shy. These personality traits were determined to directly influence if they would lead, and if discouraged, attempt to lead again.[13]

Mating

All stickleback species show similar, unusual mating behaviour. Freshwater males develop a red colouration, and although this may be seen in oceanic and benthic species these tend to remain dull-coloured. The male then constructs a nest from weeds held together by spiggin,

fertilises them. The male then guards the eggs until they hatch 7–14 days later (depending on temperature),[5][9] and may continue to guard the fry after they hatch. This large investment in both the nesting site and guarding of the eggs limits the number of females a male can mate with however males spawn multiple times.[5] This introduces the ability for selection to favor male mate choice.[14] Some males die following spawning.[11]

Mating choice

Typically, the sex with the greatest parental investment has the strongest mate preferences.[15] Stickleback species exhibit mutual mate choice in which both the male and female have strong mate preferences. This is due in part to the strong parental investment on behalf of the male in guarding the eggs.[16]

Female mate choice

Female sticklebacks show a strong preference to male stickleback with bright red coloration under their throats. Females mate both more often with males with brighter red coloration and give on average, larger eggs to be fertilized by these males. This preference has led to brighter red coloring.[17][18] This association is possible because the red coloration can only be produced by males that are free of parasites. This is referred to in the Hamilton-Zuk hypothesis.[19]

However, there is also evidence that attractive male red coloration may be a faulty signal of male quality. Male sticklebacks that are more attractive to females due to carotenoid colorants may under-allocate carotenoids to their germline cells.[20] Since carotinoids are beneficial antioxidants, their under-allocation to germline cells can lead to increased oxidative DNA damage to these cells.[20] Therefore, female sticklebacks may risk fertility and the viability of their offspring by choosing redder, but more deteriorated partners with reduced sperm quality.

Female mate choice has also been seen to be condition dependent. Females are almost always the more choosy sex in most species. Female sticklebacks though, have been found to be less choosy of mates when in poor physical condition and inversely, more choosy in good condition.[21]

Male mate choice

In some species, such as the three-spined stickleback, the large investment in both nesting site and guarding of eggs by males limits the number of females a male can mate with.[22] This introduces the ability for selection to favor male mate choice. Male mate choice is rarely studied or observed in many species but multiple studies have confirmed male mate choice within stickleback species. Males show a choosiness similar to females as to what female they are willing to court and mate. Male sticklebacks have been observed to show preference towards female sticklebacks that are larger and longer. This is believed to be because larger females on average produce larger eggs, which leads to a greater offspring survival and fitness.[16] In addition, male sticklebacks have also been observed to prefer females with more distended or bloated stomachs. The benefits of this is also due to larger eggs and thus offspring survival and fitness[23]

Use in science

behaviour of this fish were important in the early development of ethology as an example of a fixed action pattern. More recently, the fish have become a favourite system for studying the molecular genetics of evolutionary change in wild populations[24] and a powerful "supermodel" for combining evolutionary studies at molecular, developmental, population genetic, and ecological levels.[25] The nearly complete genome sequence of a reference freshwater stickleback was described in 2012, along with set of genetic variants commonly found in 21 marine and freshwater populations around the world. Some variants, and several chromosome inversions, consistently distinguish marine and freshwater populations, helping identify a genome-wide set of changes contributing to repeated adaptation of sticklebacks to marine and freshwater environments.[26]

References

  1. ^ .
  2. .
  3. .
  4. ^ a b Froese, Rainer, and Daniel Pauly, eds. (2012). "Gasterosteidae" in FishBase. October 2012 version.
  5. ^ . Retrieved 2020-06-04.
  6. .
  7. .
  8. ^ The Repeater - NYTimes.com
  9. ^ .
  10. .
  11. ^ a b "Three-spined stickleback". Gma.org. Retrieved 2012-08-31.
  12. ^ Froese, Rainer; Pauly, Daniel (eds.) (2014). "Spinachia spinachia" in FishBase. April 2014 version.
  13. ^ "Stickleback fish show initiative, personality and leadership". phys.org. Retrieved 2020-06-26.
  14. S2CID 53183473
    .
  15. .
  16. ^ .
  17. .
  18. .
  19. .
  20. ^ a b Kim SY, Velando A. Attractive male sticklebacks carry more oxidative DNA damage in the soma and germline. J Evol Biol. 2020 Jan;33(1):121-126. doi: 10.1111/jeb.13552. Epub 2019 Nov 7. PMID: 31610052
  21. S2CID 205043554
    .
  22. .
  23. .
  24. ^ Kingsley, D.M. and Peichel, C.L. (2007) The molecular genetics of evolutionary change in sticklebacks. in Biology of the three-spinestickleback. Ostlund-Nillson, S., Mayer, I. and Huntingford, F.A. (eds). CRC Press. pp. 41-81
  25. S2CID 82257399
    . Retrieved 2012-08-31.
  26. .

External links