Streptomyces

Source: Wikipedia, the free encyclopedia.

Streptomyces
Slide
culture
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Streptomycetales
Family: Streptomycetaceae
Genus: Streptomyces
Waksman and Henrici 1943 (Approved Lists 1980)
Type species
Streptomyces albus
(Rossi Doria 1891) Waksman and Henrici 1943
Diversity
About 550 species
Synonyms[1]
List
  • Actinacidiphila Madhaiyan et al. 2022
  • Actinopycnidium Krassilnikov 1962 (Approved Lists 1980)
  • Actinosporangium Krassilnikov and Yuan 1961 (Approved Lists 1980)
  • Chainia Thirumalachar 1955 (Approved Lists 1980)
  • Elytrosporangium Falcão de Morais et al. 1966 (Approved Lists 1980)
  • "Indiella" Brumpt 1906
  • "Indiellopsis" Brumpt 1913
  • Kitasatoa Matsumae and Hata 1968 (Approved Lists 1980)
  • ?"Macrospora" Tsyganov et al. 1964
  • "Microechinospora" Konev et al. 1967
  • Microellobosporia Cross, Lechevalier & Lechevalier 1963 (Approved Lists 1980)
  • "Oospora" Krüger 1904[citation needed]
  • Streptantibioticus Madhaiyan et al. 2022
  • Streptoverticillium Baldacci 1958 (Approved Lists 1980)
  • ?"Verticillomyces" Shinobu 1965

Streptomyces is the largest

genomes with high GC content.[5][7] Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin.[8] Different strains of the same species may colonize very diverse environments.[5]

Streptomycetes are characterised by a complex

S. scabies
.

Taxonomy

Streptomyces is the type genus of the family

spores
.

Saccharopolyspora erythraea was formerly placed in this genus (as Streptomyces erythraeus).

Morphology

The genus Streptomyces includes

Gram-positive, multicellular, filamentous bacteria that produce well-developed vegetative hyphae (between 0.5-2.0 µm in diameter) with branches. They form a complex substrate mycelium that aids in scavenging organic compounds from their substrates.[15] Although the mycelia and the aerial hyphae that arise from them are amotile, mobility is achieved by dispersion of spores.[15] Spore surfaces may be hairy, rugose, smooth, spiny or warty.[16] In some species, aerial hyphae consist of long, straight filaments, which bear 50 or more spores at more or less regular intervals, arranged in whorls (verticils). Each branch of a verticil produces, at its apex, an umbel, which carries from two to several chains of spherical to ellipsoidal, smooth or rugose spores.[15]
Some strains form short chains of spores on substrate hyphae. Sclerotia-, pycnidia-, sporangia-, and synnemata-like structures are produced by some strains.

Genomics

The complete

S. coelicolor (Müller), although it is often referred to as S. coelicolor for convenience.[18] The transcriptome and translatome analyses of the strain A3(2) were published in 2016.[19]

The first complete genome sequence of

Wellcome Trust Sanger Institute. At 10.1 Mbp long and encoding 9,107 provisional genes, it is the largest known Streptomyces genome sequenced, probably due to the large pathogenicity island.[21][22]

The genomes of the various Streptomyces species demonstrate remarkable plasticity, via ancient single gene duplications, block duplications (mainly at the chromosomal arms) and horizontal gene transfer.

lanthipeptides) that are related to competition among bacteria, in Streptomyces species.[5] Streptomycetes are major biomass degraders, mainly via their carbohydrate-active enzymes.[26] Thus, they also need to evolve an arsenal of siderophores and antimicrobial agents to suppress competition by other bacteria in these nutrient-rich environments that they create.[5] Several evolutionary analyses have revealed that the majority of evolutionarily stable genomic elements are localized mainly at the central region of the chromosome, whereas the evolutionarily unstable elements tend to localize at the chromosomal arms.[5][27][28][29][30] Thus, the chromosomal arms emerge as the part of the genome that is mainly responsible for rapid adaptation at both the species and strain level.[5]

Biotechnology

periplasmic space, whereas secretion by a Gram-positive bacterium such as a Streptomyces species results in secretion directly into the extracellular medium. In addition, Streptomyces species have more efficient secretion mechanisms than E.coli. The properties of the secretion system is an advantage for industrial production of heterologously expressed protein because it simplifies subsequent purification steps and may increase yield. These properties among others make Streptomyces spp. an attractive alternative to other bacteria such as E. coli and Bacillus subtilis.[33] In addition, the inherently high genomic instability suggests that the various Streptomycetes genomes may be amenable to extensive genome reduction for the construction of synthetic minimal genomes with industrial applications.[5]

Plant pathogenic bacteria

Several species belonging to this genus have been found to be pathogenic to plants:[12]

  1. S. scabiei
  2. S. acidiscabies
  3. S. europaeiscabiei
  4. S. luridiscabiei
  5. S. niveiscabiei
  6. S. puniciscabiei
  7. S. reticuliscabiei
  8. S. stelliscabiei
  9. S. turgidiscabies (scab disease in potatoes)
  10. S. ipomoeae (soft rot disease in sweet potatoes)
  11. S. brasiliscabiei (first species identified in Brazil)[34]
  12. S. hilarionis and S. hayashii (new species identified in Brazil)[35]

Medicine

Streptomyces is the largest

antifungal, and antiparasitic drugs, and also a wide range of other bioactive compounds, such as immunosuppressants.[36] Almost all of the bioactive compounds produced by Streptomyces are initiated during the time coinciding with the aerial hyphal formation from the substrate mycelium.[15]

Antifungals

Streptomycetes produce numerous antifungal compounds of medicinal importance, including nystatin (from S. noursei), amphotericin B (from S. nodosus),[37] and natamycin (from S. natalensis).

Antibacterials

Members of the genus Streptomyces are the source for numerous antibacterial pharmaceutical agents; among the most important of these are:

Clavulanic acid (from S. clavuligerus) is a drug used in combination with some antibiotics (like amoxicillin) to block and/or weaken some bacterial-resistance mechanisms by irreversible beta-lactamase inhibition. Novel antiinfectives currently being developed include Guadinomine (from Streptomyces sp. K01-0509),[54] a compound that blocks the Type III secretion system of Gram-negative bacteria.

Antiparasitic drugs

S. avermitilis is responsible for the production of one of the most widely employed drugs against nematode and arthropod infestations, avermectin,[55] and thus its derivatives including ivermectin.

Other

Saptomycins D and E

Less commonly, streptomycetes produce compounds used in other medical treatments:

S. staurosporeus) also has a range of activities from antifungal to antineoplastic (via the inhibition of protein kinases
).

S. hygroscopicus and S. viridochromogenes produce the natural herbicide bialaphos.

Saptomycins are chemical compounds isolated from Streptomyces.[56]

Symbiosis

cellulolytic functions and so some Streptomyces do so in symbiosis with the wasps.[57] Book et al. have investigated several of these symbioses.[57] Book et al., 2014 and Book et al., 2016 identify several lytic isolates.[57] The 2016 study isolates Streptomyces sp. Amel2xE9 and Streptomyces sp. LamerLS-31b and finds that they are equal in activity to the previously identified Streptomyces sp. SirexAA-E.[57]

See also

References

  1. ^ Euzéby JP, Parte AC. "Streptomyces". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved June 9, 2021.
  2. .
  3. ^ Euzéby JP (2008). "Genus Streptomyces". List of Prokaryotic names with Standing in Nomenclature. Retrieved 2008-09-28.
  4. ^
    S2CID 259025020
    .
  5. ^ a b "Genus: Streptomyces". www.bacterio.net. Retrieved 2023-06-21.
  6. ^ ]
  7. .
  8. ]
  9. .
  10. .
  11. ^ .
  12. .
  13. .
  14. ^
    ISBN 978-0-87969-172-1. Retrieved 2012-01-19.{{cite book}}: CS1 maint: DOI inactive as of January 2024 (link
    )
  15. .
  16. ^ .
  17. .
  18. .
  19. .
  20. ^ . Retrieved 16 January 2012.
  21. ^ "Streptomyces scabies". Sanger Institute. Retrieved 2001-02-26.
  22. PMID 28588130
    .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. ^ .
  33. .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. . Retrieved 17 January 2012.
  45. ^ "What are Streptomycetes?". Hosenkin Lab; Hiroshima-University. Archived from the original on 4 March 2016. Retrieved 10 August 2015.
  46. S2CID 2195072
    .
  47. ^ "Finto: MeSH: Streptomyces antibioticus". finto: Finnish Thesaurus and Ontology Service. Retrieved 10 August 2015.
  48. .
  49. .
  50. .
  51. ^ "CID=53385491". PubChem Compound Database. National Center for Biotechnology Information. Retrieved 8 March 2017.
  52. .
  53. .
  54. .
  55. .
  56. ^ .

Further reading

External links