Surrogate endpoint

Source: Wikipedia, the free encyclopedia.

In clinical trials, a surrogate endpoint (or surrogate marker) is a measure of effect of a specific treatment that may correlate with a real clinical endpoint but does not necessarily have a guaranteed relationship. The National Institutes of Health (USA) defines surrogate endpoint as "a biomarker intended to substitute for a clinical endpoint".[1][2]

Surrogate markers are used when the primary endpoint is undesired (e.g., death), or when the number of events is very small, thus making it impractical to conduct a clinical trial to gather a statistically significant number of endpoints. The FDA and other regulatory agencies will often accept evidence from clinical trials that show a direct clinical benefit to surrogate markers.[3]

Surrogate endpoints can be obtained from different modalities, such as, behavioural or cognitive scores, or

MRI, PET
, or biochemical biomarkers.

A correlate does not make a surrogate. It is a common misconception that if an outcome is a correlate (that is, correlated with the true clinical outcome) it can be used as a valid surrogate endpoint (that is, a replacement for the true clinical outcome). However, proper justification for such replacement requires that the effect of the intervention on the surrogate endpoint predicts the effect on the clinical outcome: a much stronger condition than correlation.[4][5] In this context, the term Prentice criteria is used.[6]

The term "surrogate" should not be used in describing endpoints. Instead, descriptions of results and interpretations should be formulated in terms that designate the specific nature and category of variable assessed.[7]

A surrogate endpoint of a clinical trial is a laboratory measurement or a physical sign used as a substitute for a clinically meaningful endpoint that measures directly how a patient feels, functions or survives. Changes induced by a therapy on a surrogate endpoint are expected to reflect changes in a clinically meaningful endpoint.[8]

Examples

Cardiovascular disease

A commonly used example is

secondary prevention.[9] In another case, AstraZeneca was accused of marketing rosuvastatin (Crestor) without providing hard endpoint data, relying instead on surrogate endpoints. The company countered that rosuvastatin had been tested on larger groups of patients than any other drug in the class, and that its effects should be comparable to the other statins.[10]

Cancer

Progression Free Survival is a prominent example in Oncology contexts. There are examples of cancer drugs approved on the basis of progression-free survival failed to show subsequent improvements in overall survival in subsequent studies. In breast cancer, Bevacizumab (Avastin) initially gained approval from the Food and Drug Administration, but subsequently had its license revoked.[11][12] More patient focused surrogate endpoints may offer a more meaningful alternative such as Overall Treatment Utility.[13][14]

Infectious disease

In HIV/AIDS medicine, CD4 counts and viral loads are used as surrogate markers for drug approval for clinical trials.[15]

In hepatitis C medicine, the surrogate endpoint "Sustained Virological Response" has been used for the approval of expensive drugs known as Direct Acting Antivirals. The validity of this surrogate endpoint for predicting clinical outcomes has been challenged.[16][17]

For several vaccines (anthrax, hepatitis A, etc), the induction of detectable antibodies in blood is used as a surrogate marker for vaccine effectiveness, as exposure of individuals to an actual pathogen is considered unethical.[18]

Alzheimer's disease

A recent study[19] showed that plasma biomarkers have the potential to be used as surrogate biomarkers in Alzheimer's disease (AD) clinical trials. More specifically, this study demonstrated that plasma p-tau181 could potentially be used to monitor large-scale population interventions targeting preclinical AD individuals.

Criticism

There have been a number of instances when studies using surrogate markers have been used to show benefit from a particular treatment, but later, a repeat study looking at endpoints has not shown a benefit, or has even shown a harm.[20] In 2021, the FDA came under heavy criticism for the approval of an alzheimer's drug called Aduhelm based on a surrogate endpoint that was later shown to be based on fraudulent data.[21][22]

See also

  • FDA Accelerated Approval Program
    based on surrogate endpoints

References

  1. PMID 11578783
    .
  2. .
  3. ^ Alexandra Goho, "An Imperfect Substitute" CR Magazine, Spring 2009
  4. S2CID 12267404
    .
  5. .
  6. .
  7. .
  8. ^ Temple RJ. A regulatory authority's opinion about surrogate endpoints. Clinical Measurement in Drug Evaluation. Edited by Nimmo WS, Tucker GT. New York: Wiley; 1995.
  9. PMID 9576425
    .
  10. .
  11. .
  12. .
  13. ^ Handforth C, Hall PS, Marshall HC, Collinson M, Jones M, Seymour MT (2013). "Overall treatment utility: a novel outcome measure reflecting the balance of benefits and harms from cancer therapy". European Journal of Cancer. 49 (S2): 346.
  14. PMID 28095397
    .
  15. .
  16. .
  17. ^ "Expert: SVR does not equate to a cure in HCV". Helio.
  18. ^ "Table of Surrogate Endpoints That Were the Basis of Drug Approval or Licensure". Food and Drug Administration. 28 February 2022.
  19. PMID 36878697
    .
  20. .
  21. ^ "Three F.D.A. Advisers Resign Over Agency's Approval of Alzheimer's Drug". New York Times. 2 September 2021.
  22. ^ Glenza, Jessica (23 July 2022). "Critical elements of leading Alzheimer's study possibly fraudulent". The Guardian.