TATA-binding protein

Source: Wikipedia, the free encyclopedia.

TBP
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_003194
NM_001172085

NM_013684

RefSeq (protein)

NP_001165556
NP_003185

NP_038712

Location (UCSC)Chr 6: 170.55 – 170.57 MbChr 17: 15.72 – 15.75 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
TBP
SCOP2
1tbp / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

The TATA-binding protein (TBP) is a

promoters.[5]

TBP gene family

TBP is a member of a small gene family of TBP-related factors.

metazoans, whereas vertebrate genomes encode a third vertebrate family member, TBPL2
/TRF3. In specific cell types or on specific promoters TBP can be replaced by one of these TBP-related factors, some of which interact with the TATA box similarly to TBP.

Role as transcription factor

TBP is a subunit of the eukaryotic

transcription start site of the gene. However, it is estimated that only 10–20% of human promoters have TATA boxes - the majority of human promoters are TATA-less housekeeping gene promoters - so TBP is probably not the only protein involved in positioning RNA polymerase II.. The binding of TBP to these promoters is facilitated by housekeeping gene regulators.[8][9] Interestingly, transcription initiates within a narrow region at around 30 bp downstream of TATA box on TATA-containing promoters,[10] while transcription start sites of TATA-less promoters are dispersed within a 200 bp region.[11][9]

Binding of TFIID to the

TFIIF
. Each of these transcription factors contains several protein subunits.

TBP is also important for transcription by RNA polymerase I and RNA polymerase III, and is therefore involved in transcription initiation by all three RNA polymerases.[12]

TBP is involved in

DNA melting (double strand separation) by bending the DNA
by 80° (the AT-rich sequence to which it binds facilitates easy melting). The TBP is an unusual protein in that it binds the minor groove using a β sheet.

Another distinctive feature of TBP is a long string of glutamines in the N-terminus of the protein. This region modulates the DNA binding activity of the C-terminus, and modulation of DNA-binding affects the rate of transcription complex formation and initiation of transcription. Mutations that expand the number of CAG repeats encoding this

DNA-protein interactions

When TBP binds to a TATA box within the DNA, it distorts the DNA by inserting amino acid side-chains between base pairs, partially unwinding the helix, and doubly kinking it. The distortion is accomplished through a great amount of surface contact between the protein and DNA. TBP binds with the negatively charged phosphates in the DNA backbone through positively charged lysine and arginine amino acid residues. The sharp bend in the DNA is produced through projection of four bulky phenylalanine residues into the minor groove. As the DNA bends, its contact with TBP increases, thus enhancing the DNA-protein interaction.

The strain imposed on the DNA through this interaction initiates melting, or separation, of the strands. Because this region of DNA is rich in

hydrogen bonds, the DNA strands are more easily separated. Separation of the two strands exposes the bases and allows RNA polymerase II to begin transcription of the gene
.

TBP's C-terminus composes of a helicoidal shape that (incompletely) complements the T-A-T-A region of DNA. This incompleteness allows DNA to be passively bent on binding.

For information on the use of TBP in cells see: RNA polymerase I, RNA polymerase II, and RNA polymerase III.

Protein–protein interactions

TATA-binding protein has been shown to interact with:

Complex assembly

The TATA-box

transcription from different RNA polymerases. There are several related TBPs, including TBP-like (TBPL) proteins.[55]

Structure

The C-terminal core of TBP (~180 residues) is

proteins .[56] By contrast, the N-terminal region varies in both length and sequence
.

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000112592Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000014767Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 17670940
    .
  6. .
  7. .
  8. .
  9. ^ .
  10. .
  11. .
  12. .
  13. ^ "Entrez Gene: TBP TATA box binding protein".
  14. PMID 10921893
    .
  15. .
  16. ^ .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. ^ .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. ^ .
  36. .
  37. ^ .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. ^ .
  44. .
  45. ^ .
  46. .
  47. .
  48. ^ .
  49. .
  50. .
  51. .
  52. .
  53. .
  54. .
  55. .
  56. .

External links