Tachylite

Source: Wikipedia, the free encyclopedia.

Tachylite from Kīlauea volcano in Hawaii (view is about 9 cm across)

Tachylite (/ˈtækəlt/ TAK-ə-lyte; also spelled tachylyte) is a form of basaltic volcanic glass. This glass is formed naturally by the rapid cooling of molten basalt. It is a type of mafic igneous rock that is decomposable by acids and readily fusible.[citation needed] The color is a black or dark-brown, and it has a greasy-looking, resinous luster. It is very brittle and occurs in dikes, veins, and intrusive masses. The word originates from the Ancient Greek ταχύς, meaning "swift".[1]

Tachylites have the appearance of

oxidation of their iron become dark brown or red. Three modes of occurrence characterize this rock. In all cases they are found under conditions which imply rapid cooling, but they are much less common than acid volcanic glasses (or obsidians), the reason being apparently that the basic rocks have a stronger tendency to crystallize, partly because they are more liquid and the molecules have more freedom to arrange themselves in crystalline order.[1]

Tachylite can be distinguished from obsidian and pitchstone by determining its fusibility, as splinters of tachylite will fuse together when heated.[2]

Geologic occurrences

Scoria sources

The fine

Auvergne, Stromboli and Etna, and are very common also in the ash beds or tuffs of older date, such as occur in Skye, Midlothian and Fife, Derbyshire, and elsewhere. Basic pumices of this kind are exceedingly widespread on the bottom of the sea, either dispersed in the pelagic red clay and other deposits or forming layers coated with oxides of manganese precipitated on them from the sea water. These tachylite fragments, which are usually much decomposed by the oxidation and hydration of their ferrous compounds, have taken on a dark red color. This altered basic glass is known as "palagonite"; concentric bands of it often surround kernels of unaltered tachylite, and are so soft that they are easily cut with a knife. In the palagonite the minerals are also decomposed and are represented only by pseudomorphs. The fresh tachylite glass, however, often contains lozenge-shaped crystals of plagioclase feldspar and small prisms of augite and olivine, but all these minerals very frequently occur mainly as microlites or as skeletal growths with sharply-pointed corners or ramifying processes. Palagonite tuffs are found also among the older volcanic rocks. In Iceland a broad stretch of these rocks, described as "the palagonite formation," is said to cross the island from south-west to north-east. Some of these tuffs are fossiliferous; others are intercalated with glacial deposits. The lavas with which they occur are mostly olivine-basalts. Palagonite tuffs are found in Sicily, the Eifel, Hungary, Canary Islands, and other places.[1]

Lava flow sources

Flaked stone artefacts from Australia, made of tachylite

A second mode of occurrence of tachylite is in the form of

lava flows
. Basaltic rocks often contain a small amount of glassy ground-mass, and in the limburgites this becomes more important and conspicuous, but vitreous types are far less common in these than in the acid lavas.

Tachylite may form at the edge of sills or thin dikes of basalt or diabase that rapidly cooled. Such edges may be as little as a millimetre thick. It merges internally into crystalline basalt.[3]

In the

Victoria, Australia[5] has tachylite which has been exploited as a material for making Aboriginal flaked stone implements.[6]

Dike and sill sources

A third mode of occurrence of tachylite is as the margins and thin offshoots of

intrusive diabase sills in the north of England and the center of Scotland. In the Saar district of Germany similar rocks occur, some of which have been described as weisselbergites (from Weisselberg).[7]

Other localities for tachylites of this group are New Providence, Silesia and Sweden.[8]

See also

  • Pseudotachylite
     – Glassy, or very fine-grained, rock type
  • Vitrophyre – Glassy volcanic rock

Notes

  1. ^ a b c d Flett 1911, p. 344.
  2. ^ Transactions of the Edinburgh Geological Society 1888 vol5-6 p. 496
  3. ^ Britannica, The Editors of Encyclopaedia. "tachylyte". Encyclopedia Britannica, 11 Sep. 2009
  4. ^ KILAUEA VOLCANO (MT. KILAUEA), James St. John, OSU-Newark, Geology
  5. ^ 'Unusual Newer Volcanics trachyandesite cones in the Gisborne-Woodend and Kyneton-Trentham areas'
  6. ^ Clark, V. 2004. Calder Highway Kyneton to Faraday: Sub-surface Archaeological Investigations for Aboriginal Cultural Heritage in Sensitive Areas PAS1, SA1, SA4 and at Site AAV7723-0125, Near Malmsbury, Victoria. Report to VicRoads
  7. ^ Flett 1911, p. 344–345.
  8. ^ Flett 1911, p. 345.

References