Tarbosaurus

Source: Wikipedia, the free encyclopedia.

Tarbosaurus
Temporal range:
Ma
Possible Campanian record[1][2]
Skeleton on exhibit in Maryland Science Center
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Theropoda
Family: Tyrannosauridae
Subfamily: Tyrannosaurinae
Clade:
Tyrannosaurini
Genus: Tarbosaurus
Maleev, 1955b
Type species
Tarbosaurus bataar
Maleev, 1955a
Synonyms
Genus synonymy
  • Shanshanosaurus
    Dong, 1977
  • Maleevosaurus
    Carpenter, 1992
  • Jenghizkhan
    Olshevsky, 1995
Species synonymy
  • Tyrannosaurus bataar
    Maleev, 1955a
  • Gorgosaurus novojilovi
    Maleev, 1955b
  • Tarbosaurus efremovi
    Maleev, 1955b
  • Gorgosaurus lancinator
    Maleev, 1955b
  • Deinodon novojilovi
    (Maleev, 1955b) Kuhn, 1965
  • Deinodon lancinator
    (Maleev, 1955b) Kuhn, 1965
  • Aublysodon lancinator
    (Maleev, 1955b) Charig, 1967
  • Aublysodon novojilovi
    (Maleev, 1955b) Charig, 1967
  • Shanshanosaurus huoyanshanensis
    Dong, 1977
  • Tyrannosaurus efremovi
    (Maleev, 1955b) Rozhdestvensky, 1977
  • Tarbosaurus novojilovi
    (Maleev, 1955b) Olshevsky, 1978
  • Aublysodon huoyanshanensis
    (Dong, 1977) Paul, 1988a
  • Albertosaurus novojilovi
    (Maleev, 1955b) Mader & Bradley, 1989
  • Maleevosaurus novojilovi
    (Maleev, 1955b) Carpenter, 1992
  • Jenghizkhan bataar
    (Maleev, 1955a) Olshevsky, 1995
  • Tyrannosaurus novojilovi
    (Maleev, 1955b) Glut, 1997
  • ?
    Raptorex kriegsteini

    Sereno et al., 2009

Tarbosaurus (

period, considered to contain a single known species: Tarbosaurus bataar. Fossils have been recovered from the Nemegt Formation of Mongolia, with more fragmentary remains found further afield in the Subashi Formation of China
.

Although many species have been named, modern paleontologists recognize only one species, T. bataar. Some experts see this species as an Asian representative of the North American genus Tyrannosaurus, which would make the genus Tarbosaurus redundant. Tarbosaurus and Tyrannosaurus, if not synonymous, are considered to be very closely related genera. Alioramus, also from Mongolia, has previously been thought by some authorities to be the closest relative of Tarbosaurus, though this has since been disproven with the discovery of Qianzhousaurus and the description of the tyrannosaurine tribe Alioramini.

Like most known tyrannosaurids, Tarbosaurus was a large

bipedal predator
, with the type specimen measuring approximately 10 metres (33 ft) long, 3 metres (9.8 ft) tall at the hips, and weighing up to 4.5–5 metric tons (5.0–5.5 short tons). It had a unique locking mechanism in its jaw, equipped with about sixty large teeth, and the smallest arms relative to body size of all tyrannosaurids, renowned for their disproportionately tiny, two-fingered hands.

Tarbosaurus lived in a humid

phylogeny
, skull mechanics, and brain structure.

Discovery and naming

Holotype skull PIN 551–1, Museum of Paleontology, Moscow

In 1946, a joint

PIN 551–1) of a new species, which he called Tyrannosaurus bataar.[3] The specific name is a misspelling of the Mongolian word баатар/baatar, meaning "hero".[4] In the same year, Maleev also described and named three new theropod skulls, each associated with skeletal remains discovered by the same expedition in 1948 and 1949. The first of these, PIN 551–2, was named Tarbosaurus efremovi, a new generic name composed of the Ancient Greek words τάρβος (tarbos), meaning "terror", "alarm", "awe", or "reverence", and σαυρος (sauros), meaning "lizard",[5] and the species was named after Ivan Yefremov, a Russian paleontologist and science fiction author. The other two, PIN 553-1 and PIN 552–2, were also named as new species and assigned to the North American genus Gorgosaurus as G. lancinator and G. novojilovi, respectively. All three of these latter specimens are smaller than the first.[6]

death pose

A 1965 paper by A. K. Rozhdestvensky recognized all of Maleev's specimens as different growth stages of the same species, which he believed to be distinct from the North American Tyrannosaurus. He created a new combination, Tarbosaurus bataar, to include all the specimens described in 1955 and newer material.[7] Later authors, including Maleev himself,[8] agreed with Rozhdestvensky's analysis, although some used the name Tarbosaurus efremovi instead of T. bataar.[9] American paleontologist Ken Carpenter re-examined the material in 1992. He concluded that it belonged to the genus Tyrannosaurus, as originally published by Maleev, and lumped all the specimens into the species Tyrannosaurus bataar (except the remains that Maleev had named Gorgosaurus novojilovi). Carpenter thought this specimen represented a separate, smaller genus of tyrannosaurid, which he called Maleevosaurus novojilovi.[10] George Olshevsky created the new generic name Jenghizkhan (after Genghis Khan) for Tyrannosaurus bataar in 1995, while also recognizing Tarbosaurus efremovi and Maleevosaurus novojilovi, for a total of three distinct, contemporaneous genera from the Nemegt Formation.[11] A 1999 study subsequently reclassified Maleevosaurus as a juvenile Tarbosaurus.[12] All research published since 1999 recognizes only a single species, which is either called Tarbosaurus bataar[13][14][15] or Tyrannosaurus bataar.[16]

After the original Soviet-Mongolian expeditions in the 1940s,

Phil Currie around the turn of the 21st century, discovered and collected even more Tarbosaurus material.[18][19] More than 30 specimens are known, including more than 15 skulls and several complete postcranial skeletons.[13]

Poached specimens

Tarbosaurus fossils that were smuggled to the US, and subsequently returned to Mongolia, at New York

Tarbosaurus fossils are only found around the Gobi Desert of Mongolia and China, both of which ban their export, though some specimens have been looted by private collectors.

Sukhbaatar Square, the center of the city of Ulaanbaatar.[22] Prokopi had sold the dinosaur with a partner and fellow commercial hunter in England named Christopher Moore.[23] The case led to the repatriation of dozens of Mongolian dinosaurs, including several skeletons of Tarbosaurus bataar.[24]

Synonyms

The pieces of IVPP V4878, described as Shanshanosaurus huoyanshanensis

Gregory S. Paul recognized Shanshanosaurus as a tyrannosaurid in 1988, referring it to the now-defunct genus Aublysodon.[26] Dong and Currie later re-examined the specimen and deemed it to be a juvenile of a larger species of tyrannosaurine. These authors refrained from assigning it to any particular genus, but suggested Tarbosaurus as a possibility.[27]

Albertosaurus periculosus, Tyrannosaurus luanchuanensis, Tyrannosaurus turpanensis, and Chingkankousaurus fragilis were all considered synonyms of Tarbosaurus in the second edition of the Dinosauria, but Chingkankousaurus has been assessed as dubious by Brusatte et al. (2013).[13][28]

Named in 1976 by Sergei Kurzanov, Alioramus is another genus of tyrannosaurid from slightly older sediments in Mongolia.[29] Several analyses have concluded Alioramus was quite closely related to Tarbosaurus.[4][14] It was described as an adult, but its long, low skull is characteristic of a juvenile tyrannosaurid. This led Currie to speculate that Alioramus might represent a juvenile Tarbosaurus, but he noted that the much higher tooth count and row of crests on top of the snout suggested otherwise.[30]

Skin impressions and footprints

Skin impressions were recovered from a large skeleton at the Bugiin Tsav locality that was subsequently destroyed by poachers. These impressions show non-overlapping scales with an average diameter of 2.4 millimeters (0.094 in) and pertain to the thoracic region of the individual, although the exact position can no longer be assessed due to the destruction of the skeleton.[31]

Phil Currie and colleagues (2003) described two footprints from the Nemegt locality that probably pertain to Tarbosaurus. These tracks represent natural casts, which means that only the sandy infill of the tracks, not the tracks themselves, are preserved. The better-preserved track features skin impressions over large areas on and behind the toe impressions that are similar to those discovered in Bugiin Tsav. It also features vertical parallel slide marks that were left by scales when the foot was pushed into the ground. The track measures 61 centimeters (24 in) in length, thus representing a large individual. The second track, although even larger, was affected by erosion and does not show any detail.[31]

In 1997, Ken Carpenter reported a damaged Tarbosaurus skull with impressions of a dewlap or throat pouch beneath the lower jaws, based on a personal communication from Konstantin Mikhailov.[32] Carpenter speculated that the pouch may have been used for display, possibly being brightly colored and inflatable like a frigatebird's.[33] In a 2019 communication to Mickey Mortimer, Mikhailov confirmed that this specimen had not been collected because it was on a heavy stone slab. He revealed that it had been discovered by Sergei Kurzanov and that it was Kurzanov himself who had originally interpreted the impressions as a throat structure.[34] This specimen may be the same as one that was purportedly destroyed by poachers in 1992.[35]

Description

Size comparison of specimens representing various growth stages

Although slightly smaller than Tyrannosaurus, Tarbosaurus was one of the largest tyrannosaurines, with the type specimen PIN 551–1 measuring approximately 10 metres (33 ft) long, 3 metres (9.8 ft) tall at the hips, and weighing up to 4.5–5 metric tons (5.0–5.5 short tons).[36][37][38] The largest known Tarbosaurus skull is about 1.35 m (4.4 ft) long,[39] which is larger than that of all other tyrannosaurids, aside from Tyrannosaurus.[13]

Skull

Skull of juvenile (top, MPC-D 107/7), and adult (bottom, ZPAL MgD I/4)

The skull was tall, like that of Tyrannosaurus, but not as wide, especially towards the rear. The unexpanded rear of the skull meant that Tarbosaurus‘s eyes did not face directly forwards, suggesting that it lacked the

dentary bone, creating a locking mechanism unique to Tarbosaurus and Alioramus. Other tyrannosaurids lacked this ridge and had more flexibility in the lower jaw.[4]

Postcranial skeleton

Skeletal reconstruction (ZPAL MgD I/4)

Tyrannosaurids varied little in overall body form and Tarbosaurus was no exception. The head was supported by an S-shaped neck, while the rest of the

center of gravity directly over the hips.[6]

Classification

Diagram showing the differences between a generalized Tarbosaurus (A) and Tyrannosaurus (B) skull

Tarbosaurus is classified as a

theropod in the subfamily Tyrannosaurinae of the family Tyrannosauridae. Other members include Tyrannosaurus and the earlier Daspletosaurus, both from North America,[16] and possibly the Mongolian genus Alioramus.[4][14] Animals in this subfamily are more closely related to Tyrannosaurus than to Albertosaurus and are known for their robust build with proportionally larger skulls and longer femurs than in the other subfamily, Albertosaurinae.[13]

Tarbosaurus bataar was originally described as a species of Tyrannosaurus,

cladistic analysis based on skull features instead identified Alioramus as the closest known relative of Tarbosaurus, as the two genera share skull characteristics that are related to stress distribution and are not found in other tyrannosaurines. If proven, this relationship would argue against Tarbosaurus being a synonym of Tyrannosaurus and would suggest that separate tyrannosaurine lineages evolved in Asia and North America.[4][14] The two known specimens of Alioramus, which show juvenile characteristics, are not likely juvenile individuals of Tarbosaurus because of their much higher tooth count (76 to 78 teeth) and their unique row of bony bumps along the top of their snouts.[30]

The discovery of

Lythronax argestes, a much earlier tyrannosaurine, further reveals the close relationship between Tyrannosaurus and Tarbosaurus. It was also discovered that Lythronax is a sister taxon to a clade consisting of Campanian genus Zhuchengtyrannus, and the Maastrichtian genera Tyrannosaurus and Tarbosaurus. Further studies of Lythronax also suggest that the Asian tyrannosauroids were part of one evolutionary radiation.[41]

Below is the cladogram of Tyrannosaurinae based on the

phylogenetic analysis conducted by Voris and team in 2020.[42]

Tyrannosaurinae
Alioramini

Qianzhousaurus sinensis

Alioramus remotus

Alioramus altai

Teratophoneus curriei

Dynamoterror dynastes

Lythronax argestes

Nanuqsaurus hoglundi

Daspletosaurini

Thanatotheristes degrootorum

Daspletosaurus torosus

Daspletosaurus horneri

Zhuchengtyrannus magnus

Tarbosaurus bataar

Tyrannosaurus rex

Paleobiology

Ontogeny

Juvenile specimen MPC-D 107/7
Juvenile specimen MPC-D 100/66

Most specimens of Tarbosaurus represent adult or subadult individuals, while juveniles remain very rare. Nevertheless, the 2006 discovery of a juvenile individual (MPC-D 107/7) with a complete, 290-millimeter (0.95 ft) long skull was reported and described in 2011, providing information on the life history of this dinosaur. This individual was probably 2 to 3 years old at the time of death. Compared to adult skulls, the juvenile skull was weakly constructed and the teeth were thin, indicating different food preferences in juveniles and adults that reduced competition between different age groups.[43] Examination of the sclerotic rings in this juvenile Tarbosaurus suggests they may also have been crepuscular or nocturnal hunters. Whether or not the adult Tarbosaurus were also nocturnal is currently unknown due to the lack of fossil evidence to suggest so.[44]

Senses

Braincase of Tarbosaurus (left) next to the braincaise of Iguanodon (right)

A Tarbosaurus skull found in 1948 by Soviet and Mongolian scientists (PIN 553–1, originally called Gorgosaurus lancinator) included the skull cavity that held the brain. Making a plaster

endocast, of the inside of this cavity allowed Maleev to make preliminary observations about the shape of a Tarbosaurus brain.[45] A newer polyurethane rubber cast allowed a more detailed study of Tarbosaurus brain structure and function.[46]

The endocranial structure of Tarbosaurus was similar to that of Tyrannosaurus,

cranial nerve roots, including the trigeminal and accessory nerves. Tyrannosaurid brains were more similar to those of crocodilians and other nonavian reptiles than they were to birds. The total brain volume for a 12 meters (39 ft) long Tarbosaurus is estimated at only 184 cubic centimeters (11.2 cu in).[46]

The large size of the olfactory bulbs, as well as the terminal and olfactory nerves, suggest that Tarbosaurus had a highly keen sense of smell, as was also the case with Tyrannosaurus. The vomeronasal bulb is large and differentiated from the olfactory bulb, which was initially suggested as being indicative of a well-developed Jacobsen's organ, which was used to detect pheromones. This may imply that Tarbosaurus had complex mating behavior.[46] However, the identification of the vomeronasal bulb has been challenged by other researchers because they are not present in any living archosaurs.[48]

The

midbrain tectum, responsible for visual processing in reptiles, was very small in Tarbosaurus, as were the optic nerve and the oculomotor nerve, which controls eye movement. Unlike Tyrannosaurus, which had forward-facing eyes that provided accurate binocular vision, Tarbosaurus had a narrower skull more typical of other tyrannosaurids in which the eyes faced primarily sideways. All of this suggests that Tarbosaurus relied more on its senses of smell and hearing than on its eyesight.[46] It has been suggested that the lack of binocular vision in Asian tyrannosaurs, like Tarbosaurus, might have been correlated with a greater amount of scavenging resources provided by sauropod carcasses, which might have afforded them a less active predatory lifestyle when compared to the North American forms, meaning they would need less predatory adaptations.[49] However, this is contradicted by numerous lines of evidence indicating Tarbosaurus was actively preying on hadrosaurs, titanosaur sauropods, and other large bodied herbivores in its ecosystem.[50][51][52][53]

Skull mechanics

Skull from the front and right

The skull of Tarbosaurus was completely described for the first time in 2003. Scientists noted key differences between Tarbosaurus and the North American tyrannosaurids. Many of these differences are related to the handling of stress by the skull bones during a bite. When the upper jaw bit down on an object, force was transmitted up through the maxilla, the primary tooth-bearing bone of the upper jaw, into surrounding skull bones. In North American tyrannosaurids, this force went from the maxilla into the fused nasal bones on top of the snout, which were firmly connected in the rear to the lacrimal bones by bony struts. These struts locked the two bones together, suggesting that force was then transmitted from the nasals to the lacrimals.[4]

Tarbosaurus lacked these bony struts and the connection between the nasals and lacrimals was weak. Instead, a backwards projection of the maxilla was massively developed in Tarbosaurus and fit inside a sheath formed from the lacrimal. This projection was a thin, bony plate in North American tyrannosaurids. The large backwards projection suggests that force was transmitted more directly from the maxilla to the lacrimal in Tarbosaurus. The lacrimal was also more firmly anchored to the frontal and prefrontal bones in Tarbosaurus. The well-developed connections between the maxilla, lacrimal, frontal, and prefrontal would have made its entire upper jaw much more rigid.[4]

Another major difference between Tarbosaurus and its North American relatives was its more rigid mandible. While many theropods, including North American tyrannosaurids, had some degree of flexibility between the bones in the rear of the mandible and the dentary in the front, Tarbosaurus had a locking mechanism formed from a ridge on the surface of the angular, which articulated with a square process on the rear of the dentary.[4]

Some scientists have

sauropods found in the Nemegt Formation, which did not exist in most of North America during the Late Cretaceous. The differences in skull mechanics also affect tyrannosaurid phylogeny. Tarbosaurus-like articulations between the skull bones are also seen in Alioramus from Mongolia, suggesting that it is the closest relative of Tarbosaurus. Similarities between Tarbosaurus and Tyrannosaurus might be related to their large size, independently developed through convergent evolution.[4]

Bite force and feeding

Left humerus of S. angustirostris MPC-D 100/764, showing multiple bite marks attributed to Tarbosaurus

In 2001, Bruce Rothschild and others published a study examining evidence for stress fractures and tendon avulsions in theropod dinosaurs and the implications for their behavior. Since stress fractures are caused by repeated trauma rather than singular events, they are more likely to be caused by regular behavior than other types of injuries. None of the eighteen Tarbosaurus foot bones examined in the study were found to have a stress fracture, but one of the ten examined hand bones was found to have one. Stress fractures in the hands have special behavioral significance compared to those found in the feet, since stress fractures there can be obtained while running or during migration. Hand injuries, by contrast, are more likely to be obtained while in contact with struggling prey. The presence of stress fractures and tendon avulsions, in general, provide evidence for a "very active" predation-based diet instead of obligate scavenging.[54]

As for its bite force, it was revealed in 2005 that Tarbosaurus had a bite force of around 8,000 to 10,000 pounds per square inch of force, meaning that it could crush bones just like its North American relative, Tyrannosaurus.[55]

Life restoration of Tarbosaurus pursuing Saurolophus
Life restoration of Tarbosaurus attacking Deinocheirus

David W. E. Hone and Mahito Watabe in 2011 reported the left humerus of a nearly complete

scavenging an already dead Saurolophus. It is unlikely that a large-bodied predator, such as Tarbosaurus, would have left sparse feeding traces on a single humerus when having an entire carcass to feed on. The humerus shows three distinctive feeding methods, interpreted as punctures, drag marks, and bite−and−drag marks. Hone and Watabe noted that bite marks were mostly located at the deltopectoral crest, suggesting that this Tarbosaurus was actively selecting which biting style to employ so it could scavenge the bone.[56]

In 2012, bite marks on two fragmentary

gastralia of the holotype specimen of the large ornithomimosaur Deinocheirus mirificus were reported. The size and shape of the bite marks match the teeth of Tarbosaurus, the largest known predator from the Nemegt Formation. Various types of feeding traces were identified. These include punctures, gouges, striae, fragmentary teeth, and combinations of the above marks. The bite marks probably represent feeding behavior instead of aggression between the species and the fact that bite marks were not found elsewhere on the body indicates the predator focused on internal organs. Tarbosaurus bite marks have also been identified on hadrosaur and sauropod fossils, but theropod bite marks on bones of other theropods are very rare in the fossil record.[57]

A 2020 study involving stable isotopes found that Tarbosaurus primarily hunted large dinosaurs in its environment, most notably titanosaurs and hadrosaurs.[58]

Paleoenvironment

Cretaceous-aged dinosaur fossil localities of Mongolia; Tarbosaurus was collected in area A (left)

The vast majority of known Tarbosaurus fossils were recovered from the

geologic formation has never been dated radiometrically, but the fauna present in the fossil record indicate it was probably deposited during the early Maastrichtian stage at the near end of the Late Cretaceous,[59] about 70 million years ago.[60][61] The Subashi Formation, in which Shanshanosaurus remains were discovered, is also Maastrichtian in age.[62]

Tarbosaurus is found chiefly in the Nemegt Formation, whose sediments preserve large river channels and soil deposits that indicate a far more humid climate than those suggested by the underlying

caliche deposits indicate at least periodic droughts. Sediment was deposited in the channels and floodplains of large rivers. The rock facies of this formation suggest the presence of mudflats and shallow lakes. Sediments also indicate that there existed a rich habitat, offering diverse food in abundant amounts that could sustain massive Cretaceous dinosaurs.[63] Fossils of an unidentified tyrannosaur from the older Djadochta Formation, which closely resemble those of Tarbosaurus, may indicate that it also lived at an earlier time and in a more arid ecosystem than that of the Nemegt.[1]

Restoration of Tarbosaurus in Late Cretaceous Mongolian environment

Occasional

ornithomimosaurs, such as Anserimimus, Gallimimus, and gigantic Deinocheirus might have been omnivores that only took small prey and were therefore no competition for Tarbosaurus. However, as in other large tyrannosaurids, as well as modern Komodo dragons, juveniles and subadult Tarbosaurus would have filled niches between the massive adults and these smaller theropods.[13]

See also

References

  1. ^ a b Mortimer, M (2004). "Tyrannosauroidea". The Theropod Database. Archived from the original on September 29, 2013. Retrieved August 21, 2007.
  2. .
  3. ^
    Doklady Akademii Nauk SSSR
    . 104 (4): 634–637.
  4. ^ a b c d e f g h i j k Hurum, Jørn H.; Sabath, Karol (2003). "Giant theropod dinosaurs from Asia and North America: Skulls of Tarbosaurus bataar and Tyrannosaurus rex compared" (PDF). Acta Palaeontologica Polonica. 48 (2): 161–190.
  5. .
  6. ^
    Doklady Akademii Nauk SSSR
    . 104 (5). translated by F. J. Alcock: 779–783.
  7. ^ Rozhdestvensky, Anatoly K. (1965). "Growth changes in Asian dinosaurs and some problems of their taxonomy". Paleontological Journal. 3: 95–109.
  8. ^ Maleev, Evgeny A. (1974). "Gigantic carnosaurs of the family Tyrannosauridae". The Joint Soviet-Mongolian Paleontological Expedition Transactions. 1: 132–191.
  9. ^ Barsbold, Rinchen (1983). "Carnivorous dinosaurs from the Cretaceous of Mongolia". The Joint Soviet-Mongolian Paleontological Expedition Transactions. 19: 5–119.
  10. ^ a b Carpenter, Ken. (1992). "Tyrannosaurids (Dinosauria) of Asia and North America". In Mateer, Niall J.; Peiji, Chen (eds.). Aspects of Nonmarine Cretaceous Geology. Beijing: China Ocean Press. pp. 250–268.
  11. ^ Olshevsky, George; Ford, Tracy L. (1995). "The origin and evolution of the tyrannosaurids, part 1". Dinosaur Frontline (in Japanese). 9: 92–119.
  12. S2CID 83744433
    .
  13. ^ .
  14. ^ (PDF). Acta Palaeontologica Polonica. 48 (2): 227–234.
  15. .
  16. ^ .
  17. ^ Watabe, Masato; Suzuki, Shigeru (2000). "Cretaceous fossil localities and a list of fossils collected by the Hayashibara Museum of Natural Sciences and Mongolian Paleontological Center Joint Paleontological Expedition (JMJPE) from 1993 through 1998". Hayashibara Museum of Natural Sciences Research Bulletin. 1: 99–108.
  18. Currie, Philip J.
    (2001). "Nomadic Expeditions, Inc., report of fieldwork in Mongolia, September 2000.". Alberta Palaeontological Society, Fifth Annual Symposium, Abstract Volume. Calgary: Mount Royal College. pp. 12–16.
  19. Currie, Philip J.
    (2002). "Report on fieldwork in Mongolia, September 2001.". Alberta Palaeontological Society, Sixth Annual Symposium, 'Fossils 2002,' Abstract Volume. Calgary: Mount Royal College. pp. 8–12.
  20. ^ Switek, Brian (May 19, 2012). "Stop the Tarbosaurus Auction!". Wired.
  21. ^ Black, Riley (January 9, 2013). "The Million Dollar Dinosaur Scandal". Slate. Retrieved June 6, 2021.
  22. ^ Parry, Wynne (May 7, 2013). "Mongolia gets stolen dinosaur back". Mother Nature Network. Retrieved August 21, 2013.
  23. ^ Williams, Paige (January 28, 2013). "Bones of Contention". The New Yorker. Retrieved September 9, 2017.
  24. ^ Williams, Paige (June 7, 2014). "The Black Market for Dinosaurs". The New Yorker. Retrieved September 9, 2017.
  25. ^ Dong Zhiming (1977). "On the dinosaurian remains from Turpan, Xinjiang". Vertebrata PalAsiatica (in Chinese). 15: 59–66.
  26. ^ Paul, Gregory S. (1988). Predatory Dinosaurs of the World. New York: Simon & Schuster. p. 464.
  27. .
  28. ^ Brusatte, Hone and Xu, 2013. Phylogenetic revision of Chingkankousaurus fragilis, a forgotten tyrannosauroid from the Late Cretaceous of China. in Parrish, Molnar, Currie and Koppelhus (eds.). Tyrannosaurid Paleobiology. Indiana University Press. 1–13.
  29. ^ Kurzanov, Sergei M. (1976). "A new Late Cretaceous carnosaur from Nogon−Tsav, Mongolia". The Joint Soviet-Mongolian Paleontological Expedition Transactions (in Russian). 3: 93–104.
  30. ^
    Currie, Philip J. (2003). "Cranial anatomy of tyrannosaurids from the Late Cretaceous of Alberta" (PDF). Acta Palaeontologica Polonica. 48 (2): 191–226. Archived from the original
    (PDF) on June 21, 2007.
  31. ^ .
  32. .
  33. .
  34. ^ Mortimer, M. (2019). "Tarbosaurus bataar – Skin impressions". The Theropod Database. Retrieved November 21, 2020.
  35. ^ Watabe, M.; Suzuki, S. (2000). "Report on the Japan-Mongolia Joint Paleontological Expedition to the Gobi desert, 1993". Hayashibara Museum of Natural Sciences Research Bulletin. 1: 19–29.
  36. ^ Holtz, Thomas R. Jr. (2012). Dinosaurs: The Most Complete, Up-to-Date Encyclopedia for Dinosaur Lovers of All Ages (PDF). Archived (PDF) from the original on October 2, 2022. Winter 2011 Appendix
  37. .
  38. .
  39. .
  40. ), p. 71.
  41. .
  42. .
  43. .
  44. . Retrieved June 6, 2017.
  45. ^ Maleev, Evgeny A. (1965). "On the brain of carnivorous dinosaurs". Paleontological Journal (in Russian). 2: 141–143.
  46. ^
    S2CID 53529148
    .
  47. .
  48. .
  49. .
  50. . Retrieved October 15, 2020.
  51. .
  52. .
  53. ^ Gallagher W.B., Tumanova T.A., Dodson P., Axel L., 1998, "CT scanning Asian ankylosaurs: paleopathology in a Tarchia skull", Journal of Vertebrate Paleontology 18: 44A-45A
  54. ^ Rothschild, B., Tanke, D. H., and Ford, T. L., 2001, Theropod stress fractures and tendon avulsions as a clue to activity: In: Mesozoic Vertebrate Life, edited by Tanke, D. H., and Carpenter, K., Indiana University Press, p. 331-336.
  55. ^ Therrien, Francois; Henderson, Donald M.; Ruff, Christopher B. (January 2005). "Bite me: Biomechanical models of theropod mandibles and implications for feeding behavior". In Kenneth Carpenter (ed.). The Carnivorous Dinosaurs. Indiana University Press. pp. 179–237. Retrieved November 11, 2018.
  56. .
  57. .
  58. . Retrieved October 15, 2020.
  59. ^ .
  60. ^ Sulliban, R.M. (2006). "A taxonomic review of the Pachycephalosauridae (Dinosauria: Ornithischia)." Pp. 347-366 in Lucas, S.G. and Sullivan, R.M. (eds.), Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 3.
  61. .
  62. ^ Shen, Y.B.; Mateer, Niall J. (1992). "An outline of the Cretaceous System in northern Xinjiang, western China". In Mateer, Niall J.; Peiji, Chen (eds.). Aspects of Nonmarine Cretaceous Geology. Beijing: China Ocean Press. pp. 49–77.
  63. ^ Efimov, Mikhail B. (1983). "Revision of the fossil crocodiles of Mongolia". The Joint Soviet-Mongolian Paleontological Expedition Transactions (in Russian). 24: 76–95.

External links

Images and photos

Readable material