Tardigrade

Source: Wikipedia, the free encyclopedia.

Tardigrade
Temporal range: Turonian–Recent Middle Cambrian stem-group fossils
Milnesium tardigradum, a eutardigrade
heterotardigrade
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Subkingdom: Eumetazoa
Clade: ParaHoxozoa
Clade: Bilateria
Clade: Nephrozoa
(unranked): Protostomia
Superphylum: Ecdysozoa
(unranked): Panarthropoda
Phylum: Tardigrada
Spallanzani, 1777
Classes

Tardigrades (

micro-animals.[2][6] They were first described by the German zoologist Johann August Ephraim Goeze in 1773, who called them Kleiner Wasserbär ('little water bear').[7] In 1777, the Italian biologist Lazzaro Spallanzani named them Tardigrada (/tɑːrˈdɪɡrədə/), which means "slow steppers".[8]

They have been found in diverse regions of Earth's

pressures (both high and low), air deprivation, radiation, dehydration, and starvation – that would quickly kill most other known forms of life.[11] Tardigrades have survived exposure to outer space.[12][13] There are about 1,300 known species[14] in the phylum Tardigrada, a part of the superphylum Ecdysozoa consisting of animals that grow by ecdysis (shedding an exoskeleton) such as arthropods and nematodes. The earliest known true members of the group are known from Cretaceous (145 to 66 million years ago) amber, found in North America, but are essentially modern forms. Their origin is therefore likely much earlier, as they diverged from their closest relatives in the Cambrian
more than 500 million years ago.

Tardigrades are usually about 0.5 mm (0.020 in) long when fully grown.[2] They are short and plump, with four pairs of legs, each ending in claws (usually four to eight) or suction disks.[2][15] Tardigrades are prevalent in mosses and lichens and feed on plant cells, algae, and small invertebrates. When collected, they may be viewed under a low-power microscope, making them accessible to students and amateur scientists.[16]

Naming

Johann August Ephraim Goeze

Johann August Ephraim Goeze originally named the tardigrade Kleiner Wasserbär, meaning "little water-bear" in German (today, they are often referred to in German as Bärtierchen or "little bear-animal"). The name "water-bear" comes from the way they walk, reminiscent of a bear's gait. The name Tardigradum means "slow walker" and was given by Lazzaro Spallanzani in 1777.[8]

Description

SEM image of Hypsibius dujardini

The largest adults may reach a body length of 1.5 mm (0.059 in), the smallest below 0.1 mm (0.0039 in). Newly hatched tardigrades may be smaller than 0.05 mm (0.0020 in). For comparison, grass pollen is typically 0.025–0.04 mm (0.00098–0.00157 in).

Habitat

Tardigrades are often found on lichens and mosses; for example, by soaking a piece of moss in water.

freshwater sediments, where they may occur quite frequently, up to 25,000 animals per litre (95,000 animals per gallon). One tardigrade, Echiniscoides wyethi,[18] may be found on barnacles.[19]

Anatomy and morphology

Tardigrades have barrel-shaped bodies with four pairs of stubby legs. Most range from 0.3 to 0.5 mm (0.012 to 0.020 in) in length, although the largest species may reach 1.2 mm (0.047 in).

joints, while the feet have four to eight claws each. The cuticle contains chitin and protein and is moulted periodically. The first three pairs of legs are directed downward along the sides and are the primary means of locomotion, while the fourth pair is directed backward on the last segment of the trunk and is used primarily for grasping the substrate.[20]

Tardigrades lack several Hox genes and a large intermediate region of the body axis. In insects, this corresponds to the entire thorax and the abdomen. Practically the whole body, except for the last pair of legs, is made up of just the segments that are homologous to the head region in arthropods.[21]

All adult tardigrades of the same species have the same number of cells (see eutely). Some species have as many as 40,000 cells in each adult, while others have far fewer.[22][23]

The body cavity consists of a

Malpighian tubules of arthropods, although the details remain unclear.[24] Also, nephridia are absent.[25]

The tubular mouth is armed with

molts, and a new pair is secreted from a pair of glands that lie on either side of the mouth. The pharynx connects to a short esophagus, and then to an intestine that occupies much of the length of the body, which is the main site of digestion. The intestine opens, via a short rectum, to an anus located at the terminal end of the body. Some species only defecate when they molt, leaving the feces behind with the shed cuticle.[24]

The tardigrade nervous system consists primarily of the brain and four segmental ganglia associated with the four body segments.

ventral nerve cord runs the length of the body. The cord possesses one ganglion per segment, each of which produces lateral nerve fibres that run into the limbs. Many species possess a pair of rhabdomeric pigment-cup eyes, and numerous sensory bristles are on the head and body.[30]

Tardigrades all possess a buccopharyngeal apparatus (swallowing device made of muscles and spines that activates an inner jaw and begins digestion and movement along the throat and intestine[31]) which, along with the claws, is used to differentiate species.

Reproduction

Shed cuticle of female tardigrade, containing eggs

Although some species are parthenogenic, both males and females are usually present, although females are frequently larger and more common. Both sexes have a single gonad located above the intestine. Two ducts run from the testes in males, opening through a single pore in front of the anus. In contrast, females have a single duct opening either just above the anus or directly into the rectum, which forms a cloaca.[24]

Tardigrades are

oviparous, and fertilization is usually external. Mating occurs during the molt with the eggs being laid inside the shed cuticle of the female and then covered with sperm. A few species have internal fertilization, with mating occurring before the female fully sheds her cuticle. In most cases, the eggs are left inside the shed cuticle to develop, but some species attach them to a nearby substrate.[24]

The eggs hatch after no more than 14 days, with the young already possessing their full complement of adult cells. Growth to adult size occurs by enlargement of the individual cells (hypertrophy), rather than by cell division. Tardigrades may molt up to 12 times.[24]

Tardigrades tend to court before mating. Courtship is an early step in mating and was first observed in tardigrades in 1895. Research shows that up to nine males aggregate around a female to mate.[32]

Ecology and life history

Video of tardigrade under the microscope
Living tardigrades moving around

Most tardigrades are

phytophagous (plant eaters) or bacteriophagous (bacteria eaters), but some are carnivorous to the extent that they eat smaller species of tardigrades (for example, Milnesium tardigradum).[33][34] In addition, one extant species, Tetrakentron synaptae, alongside the undescribed Cambrian “Orsten” tardigrade [35]
are parasitic.

Tardigrades share morphological characteristics with many species that differ largely by class. Biologists have a difficult time finding verification among tardigrade species because of this relationship.[clarification needed] These animals are most closely related to the early evolution of arthropods.[36] Tardigrade fossils go as far back as the Cretaceous period in North America. Tardigrades are considered cosmopolitan and can be located in regions all over the world. The eggs and cysts of tardigrades are so durable that they can be carried great distances on the feet of other animals.[15]

Tardigrades have survived all five recognized

mass extinctions
due to their plethora of survival characteristics, including the ability to survive conditions that would be fatal to almost all other animals (see the next section).

The lifespan of tardigrades ranges from three to four months for some species, up to two years for other species, not counting their time in dormant states.[37]

Physiology

Hypsibius dujardini imaged with a scanning electron microscope
Tardigrade (unknown species, ventral view) imaged using scanning electron microscopy

Scientists have reported tardigrades in

polar regions to the equator, under layers of solid ice, and in ocean sediments. Many species can be found in milder environments such as lakes, ponds, and meadows
, while others can be found in stone walls and roofs. Tardigrades are most common in moist environments but can stay active wherever they can retain at least some moisture.

Tardigrades are thought to be able to survive even complete global mass

gamma-ray bursts, or large meteorite impacts.[9][10] Some of them can withstand extremely cold temperatures down to 0.01 K (−460 °F; −273 °C) (close to absolute zero), while others can withstand extremely hot temperatures up to 420 K (300 °F; 150 °C)[39][40] for several minutes, pressures about six times greater than those found in the deepest ocean trenches, ionizing radiation at doses hundreds of times higher than the lethal dose for a human, and the vacuum of outer space.[41] Tardigrades that live in harsh conditions undergo an annual process of cyclomorphosis, allowing for survival in subzero temperatures.[42]

They are not considered

geochemically extreme environment that would harm most other organisms.[3][43][44]

Tardigrades are one of the few groups of species that are capable of suspending their metabolism (see

anoxybiosis
.

Their ability to remain desiccated for such long periods of time was thought to be dependent on high levels of the nonreducing disaccharide trehalose,[52] which is commonly seen in other organisms that survive desiccation, and tardigrades have trehalase genes.[53] However, it has been seen that in both tardigrades and bdelloid rotifers, there is only a partial capability to synthesize trehalose in quantities that may contribute to desiccation tolerance.[52][54]

In response to this finding, more research was done on how these animals survived such extreme conditions. It was found that intrinsically disordered proteins (IDPs) were highly expressed in response to desiccation in tardigrades. Additionally, three new IDPs were found to be specific to tardigrades and coined tardigrade specific proteins (TDPs). These TDPs may maintain the structure of membranes by associating with the polar heads of the phospholipids bilayers, avoiding structural damage upon rehydration.[55] Also, TDPs, being highly hydrophilic, are thought to be involved in a vitrification mechanism, where a glass-like matrix forms within cells to protect the cellular contents upon desiccation.[56] Their DNA is further protected from radiation by a protein called "dsup" (short for damage suppressor).[57][58] In this cryptobiotic state, the tardigrade is known as a tun.[59]

Tardigrades can survive in extreme environments that would kill almost any other animal.[53] Extremes at which tardigrades can survive include those of:

  • Temperature – tardigrades can survive:
    • A few minutes at 151 °C (304 °F)[60]
    • 30 years at −20 °C (−4 °F)[61]
    • A few days at −200 °C (−328 °F; 73 K)[60]
    • A few minutes at −272 °C (−458 °F; 1 K)[62]

Research published in 2020 shows that tardigrades are sensitive to high temperatures. Researchers showed it takes 48 hours at 37.1 °C (98.8 °F) to kill half of active tardigrades that have not been acclimated to heat. Acclimation boosted the temperature needed to kill half of active tardigrades to 37.6 °C (99.7 °F). Tardigrades in the tun state fared a bit better, tolerating higher temperatures. It took heating to 82.7 °C (180.9 °F) to kill half of tun-state tardigrades within one hour. Longer exposure time decreased the temperature needed for lethality, though. For 24 hours of exposure, 63.1 °C (145.6 °F) was enough to kill half of the tun-state tardigrades.[63]

  • Pressure – they can withstand the extremely low pressure of a vacuum and also very high pressures, more than 1,200 times atmospheric pressure. Some species can also withstand pressures of 6,000 atmospheres, which is nearly six times the pressure of water in the deepest ocean trench, the Mariana Trench.[22] Tardigrades can survive at altitudes of more than 19,600 feet (6,000 meters) and depths of more than 15,000 feet (4,600 m) below the surface.[citation needed]
  • gigapascals.[64]
  • Dehydration – the longest that living tardigrades have been shown to survive in a dry state is nearly 10 years,[46][47] although there is one report of leg movement, not generally considered "survival",[65] in a 120-year-old specimen from dried moss.[66] When exposed to extremely low temperatures, their body composition goes from 85% water to only 3%. Because water expands upon freezing, dehydration ensures the tardigrades' tissues are not ruptured by the expansion of freezing ice.[67]
  • UV radiation in comparison to other animals, and that one factor for this is their efficient ability to repair damage to their DNA resulting from that exposure.[70]
Irradiation of tardigrade eggs collected directly from a natural substrate (moss) showed a clear dose-related response, with a steep decline in hatchability at doses up to 4 kGy, above which no eggs hatched.[71] The eggs were more tolerant to radiation late in development. No eggs irradiated at the early developmental stage hatched, and only one egg at middle stage hatched, while eggs irradiated in the late stage hatched at a rate indistinguishable from controls.[71]
  • Environmental toxins – tardigrades are reported to undergo chemobiosis, a cryptobiotic response to high levels of environmental toxins. However, as of 2001, these laboratory results have yet to be verified.[65][66]

Survival after exposure to outer space

Tardigrades are the first known animal to survive after exposure to outer space.

cryptobiotic state may have survived for a while on the Moon after the April 2019 crash landing of Beresheet, a failed Israeli lunar lander, but in May 2021 it was reported that they were unlikely to have survived the impact.[82][83][64]

In recent years, there has also been increased speculation regarding tardigrades' ability to survive on Mars without any life support systems,[84] but it would still "need stuff to eat" to survive.[85]

Taxonomy

Illustration of Echiniscus sp. from 1861
Drawing of Echiniscus testudo on a grain of sand

Scientists have conducted

nematodes. Evidence for the former is a common result of morphological studies; evidence for the latter is found in genomic analysis.[86]

Panarthropoda

Water bears (Tardigrada)

Antennopoda

Velvet worms (Onychophora)

Arthropods (

Arthropoda)

The minute sizes of tardigrades and their membranous integuments make their

Orsten fauna) and a few rare specimens from Cretaceous amber.[87]

The Siberian tardigrade fossils differ from living tardigrades in several ways. They have three pairs of legs rather than four, they have a simplified head morphology, and they have no posterior head appendages, but they share with modern tardigrades their columnar cuticle construction.[88] Scientists think they represent a stem group of living tardigrades.[87]

In October 2021, a new species, Paradoryphoribius chronocaribbeus, was discovered as a fossil in amber that was dated to be 16 million years old.[89]

Evolutionary history

Schematic reconstruction of four luolishaniids, possibly the closest known fossil relatives of modern tardigrades.
Reconstruction of the unnamed "Orsten" tardigrade, from the Cambrian Kuonamka Formation
Reconstruction of Paradoryphoribius, a miocene tardigrade

There are multiple lines of evidence that tardigrades are secondarily miniaturized from a larger ancestor,

lobopodian and perhaps resembling Aysheaia, which many analyses place close to the divergence of the tardigrade lineage.[91][92] An alternative hypothesis derives tactopoda from a clade encompassing dinocaridids and Opabinia.[93] A 2023 analysis concluded, on the basis of numerous morphological similarities, that luolishaniids, a group of Cambrian lobopodians, might be the closest known relatives of Tardigrada.[94]

The oldest remains of modern tardigrades are those of

Beornidae), but was subsequently suggested as belonging to Hypsibiidae. An indeterminate heterotardigrade was also noted from the same deposit.[96]

The enigmatic panarthropod Sialomorpha found in 30-million year old Dominican amber, while not classifiable as a tardigrade, shows some apparent affinities.[97][98]

Genomes and genome sequencing

Tardigrade

Hypsibius exemplaris (formerly Hypsibius dujardini) has a compact genome of 100 megabase pairs[100] and a generation time of about two weeks; it can be cultured indefinitely and cryopreserved.[101]

The genome of Ramazzottius varieornatus, one of the most stress-tolerant species of tardigrades, was sequenced by a team of researchers from the University of Tokyo in 2015. While previous research had claimed that around one-sixth of the genome had been acquired from other organisms,[102] it is now known that less than 1.2% of its genes were the result of horizontal gene transfer. They also found evidence of a loss of gene pathways that are known to promote damage due to stress. This study also found a high expression of novel tardigrade-unique proteins, including Damage suppressor (Dsup),[103] which was shown to protect against DNA damage from X-ray radiation. The same team applied the Dsup protein to human cultured cells and found that it suppressed X-ray damage to the human cells by around 40%.[58] While the exact mechanism of DNA protection is largely unknown, the results from an August 2020 study suggest that strong electrostatic attractions along with high protein flexibility help form a molecular aggregate, which allows Dsup to shield DNA.[104]

The

Hypsibius exemplaris promote survival by binding to nucleosomes and protecting chromosomal DNA from hydroxyl radicals.[105] The Dsup protein of R. varieornatus also confers resistance to ultraviolet-C by upregulating DNA repair genes that protect the genomic DNA from the damages introduced by UV irradiation.[106]

Ecological importance

Many organisms that live in aquatic environments feed on species such as nematodes, tardigrades, bacteria, algae, mites, and

collembolans.[107] Tardigrades work as pioneer species by inhabiting new developing environments. This movement attracts other invertebrates to populate that space, while also attracting predators.[36]

In popular culture

See also

References

  1. ^ "tardigrade". Dictionary.com Unabridged (Online). n.d.
  2. ^ a b c d Miller, William (2017-02-06). "Tardigrades". American Scientist. Retrieved 2018-04-13.
  3. ^ a b c d Simon, Matt (21 March 2014). "Absurd Creature of the Week: The Incredible Critter That's Tough Enough to Survive in the vacuum of Space". Wired. Retrieved 2014-03-21.
  4. ^ Copley, Jon (23 October 1999). "Indestructible". New Scientist. No. 2209. Retrieved 2010-02-06.
  5. ^ "Stanford Tardigrade Project". Foldscope. 2016-08-10. Retrieved 2017-03-23.
  6. ^ Dean, Cornelia (September 9, 2015). "Meet tardigrade, the water bear". The Hindu. Retrieved August 9, 2019.
  7. . Retrieved 31 May 2021.
  8. ^ a b c d e Bordenstein, Sarah. "Tardigrades (Water Bears)". Microbial Life Educational Resources. National Science Digital Library. Retrieved 2014-01-24.
  9. ^ a b Guarino, Ben (14 July 2017). "These animals can survive until the end of the Earth, astrophysicists say". The Washington Post. Retrieved 14 July 2017.
  10. ^
    PMID 28710420
    .
  11. .
  12. ^ "'Water Bears' are first animal to survive vacuum of space". New Scientist. Archived from the original on 10 September 2008. Retrieved 10 September 2008.
  13. ^ "'Water Bears' Able To Survive Exposure To Vacuum Of Space". Science Daily. Archived from the original on 11 September 2008. Retrieved 10 September 2008.
  14. . Retrieved 2023-12-10.
  15. ^ .
  16. ^ Shaw, Michael W. "How to Find Tardigrades". Tardigrade USA. Archived from the original on 10 February 2014. Retrieved 2013-01-14.
  17. PMID 12176341
    .
  18. ^ "Researchers discover new tiny organism, name it for Wyeths". AP News. 29 September 2015. Retrieved 2015-09-29.
  19. S2CID 85893082
    .
  20. .
  21. .
  22. ^ .
  23. ^ Kinchin, Ian M. (1994) The Biology of Tardigrades Ashgate Publishing
  24. ^ .
  25. ^ Segmentation in Tardigrada and diversification of segmental patterns in Panarthropoda
  26. PMID 24152256
    .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. ^ Lindahl, K. (15 March 2008). "Tardigrade Facts".
  35. .
  36. ^ a b Brent Nichols, Phillip (2005). Tardigrade Evolution and Ecology (PhD). Tampa, FL: University of South Florida.
  37. ^ Glime, Janice (2010). "Tardigrades". Bryophyte Ecology: Volume 2, Bryological Interaction.
  38. ^ Hogan, C. Michael (2010). "Extremophile". In E. Monosson; C. Cleveland. (eds.). Encyclopedia of Earth. Washington, DC: National Council for Science and the Environment.
  39. ^ Simon, Matt (21 March 2014). "Absurd Creature of the Week: The Incredible Critter That's Tough Enough to Survive in Space". Wired.
  40. OCLC 340800193.{{cite book}}: CS1 maint: others (link
    )
  41. ^ a b Dean, Cornelia (7 September 2015). "The Tardigrade: Practically Invisible, Indestructible 'Water Bears'". The New York Times. Retrieved 7 September 2015.
  42. S2CID 23429443
    .
  43. .
  44. .
  45. ^ Brennand, Emma (17 May 2011). "Tardigrades: Water bears in space". BBC. Retrieved 2013-05-31.
  46. ^
    PMID 9558455
    .
  47. ^ .
  48. .
  49. .
  50. ^ Anderson, David. "Humans are just starting to understand this nearly invincible creature – and it's fascinating". BusinessInsider.com. Business Insider Inc. Retrieved 26 October 2017.
  51. ^ Jönsson, K., & Bertolani, R. (2001). Facts and fiction about long-term survival in tardigrades. Journal of Zoology, 255(1), 121-123. doi:10.1017/S0952836901001169
  52. ^
    PMID 33192606
    .
  53. ^ .
  54. .
  55. .
  56. .
  57. ^ Tauger, Nathan; Gill, Victoria (20 September 2016). "Survival secret of 'Earth's hardiest animal' revealed". BBC News. Retrieved 2016-09-21.
  58. ^
    PMID 27649274
    .
  59. .
  60. ^ .
  61. .
  62. ^ Becquerel, Paul (1950). "La suspension de la vie au dessous de 1/20 K absolu par demagnetization adiabatique de l'alun de fer dans le vide les plus eléve" [The suspension of life below 1/20 K absolute by adiabatic demagnetization of iron alum in the highest vacuum]. Comptes Rendus des Séances de l'Académie des Sciences (in French). 231 (4): 261–63.
  63. PMID 31919388
    .
  64. ^ .
  65. ^ .
  66. ^ a b Franceschi, T. (1948). "Anabiosi nei tardigradi" [Anabiosis in Tardigrades]. Bollettino dei Musei e Degli Istituti Biologici dell'Università di Genova (in Italian). 22: 47–49.
  67. ^ Kent, Michael (2000), Advanced Biology, Oxford University Press
  68. S2CID 25354328
    .
  69. ^ .
  70. ^ Horikawa, Daiki D. "UV Radiation Tolerance of Tardigrades". NASA.com. Archived from the original on 2013-02-18. Retrieved 2013-01-15.
  71. ^ .
  72. ^ a b Courtland, Rachel (8 September 2008). "'Water bears' are first animal to survive space vacuum". New Scientist. Retrieved 2011-05-22.
  73. ^
    S2CID 8566993
    .
  74. ^ "Creature Survives Naked in Space". Space.com. 8 September 2008. Retrieved 2011-12-22.
  75. ^ Mustain, Andrea (22 December 2011). "Weird wildlife: The real land animals of Antarctica". NBC News. Retrieved 2011-12-22.
  76. S2CID 8566993
    .
  77. ^ NASA Staff (17 May 2011). "BIOKon In Space (BIOKIS)". NASA. Archived from the original on 17 April 2011. Retrieved 2011-05-24.
  78. ^ Brennard, Emma (17 May 2011). "Tardigrades: Water bears in space". BBC. Retrieved 2011-05-24.
  79. ^ "Tardigrades: Water bears in space". BBC Nature. 17 May 2011.
  80. .
  81. ^ Reuell, Peter (2019-07-08). "Harvard study suggests asteroids might play key role in spreading life". Harvard Gazette. Retrieved 2019-11-30.
  82. ^ Oberhaus, Daniel (5 August 2019). "A Crashed Israeli Lunar Lander Spilled Tardigrades On The Moon". Wired. Retrieved 6 August 2019.
  83. ^ Resnick, Brian (6 August 2019). "Tardigrades, the toughest animals on Earth, have crash-landed on the moon – The tardigrade conquest of the solar system has begun". Vox. Retrieved 6 August 2019.
  84. ^ Łukasz Kaczmarek. Can Tardigrades Theoretically Survive on Mars? Conference: Early Earth and ExoEarths: origin and evolution of lifeAt: Warszawa, Poland. April 2017. https://www.researchgate.net/publication/319213582_Can_tardigrades_theoretically_survive_on_Mars. Accessed on Oct 16, 2021
  85. .
  86. ^ Yoshida et al. (2017) Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLOS.
  87. ^ .
  88. .
  89. ^ Lanese, Nicoletta (5 October 2021). "Tardigrade trapped in amber is a never-before-seen species". Live Science. Retrieved 6 October 2021.
  90. S2CID 53669741
    .
  91. .
  92. .
  93. .
  94. .
  95. .
  96. , retrieved 2020-11-24
  97. .
  98. ^ Dvorsky, George (October 9, 2019). "You've Heard Of Water Bears, But How About These Ancient Mould Pigs?". Gizmodo. Retrieved October 9, 2019.
  99. ^ "Genome Size of Tardigrades".
  100. PMID 28749982
    .
  101. .
  102. ^ Fiona Macdonald (7 December 2015). "New Research Casts Doubt on The Claim That Tardigrades Get 1/6 of DNA From Other Species". ScienceAlert.
  103. ^ Zimmer, Carl (12 April 2024). "What Makes Tiny Tardigrades Nearly Radiation Proof - New research finds that the microscopic "water bears" are remarkably good at repairing their DNA after a huge blast of radiation". The New York Times. Archived from the original on 12 April 2024. Retrieved 13 April 2024.
  104. PMID 32770133
    .
  105. ^ Chavez C, Cruz-Becerra G, Fei J, Kassavetis GA, Kadonaga JT. The tardigrade damage suppressor protein binds to nucleosomes and protects DNA from hydroxyl radicals. Elife. 2019 Oct 1;8:e47682. doi: 10.7554/eLife.47682. PMID 31571581; PMCID: PMC6773438
  106. ^ Ricci C, Riolo G, Marzocchi C, Brunetti J, Pini A, Cantara S. The Tardigrade Damage Suppressor Protein Modulates Transcription Factor and DNA Repair Genes in Human Cells Treated with Hydroxyl Radicals and UV-C. Biology (Basel). 2021 Sep 27;10(10):970. doi: 10.3390/biology10100970. PMID 34681069; PMCID: PMC8533384
  107. .
  108. .
  109. ^ "How the Quantum Realm could play into future Marvel films". The Daily Dot. 10 July 2018. Retrieved 29 July 2018.
  110. ^ King, Darryn (6 July 2018). "The Science (and the Scientists) Behind 'Ant-Man'". The New York Times. Retrieved 29 July 2018.
  111. ^ "Ant-Man and the Wasp needs a little help". 4 July 2018. Retrieved 29 July 2018. Ant-Man and the Wasp is still intermittent fun, particularly for fans of tardigrades, the water-dwelling micro-fauna that had a brief cameo in the first Ant-Man, and get their well-deserved close-up in this one.[permanent dead link]
  112. ^ "'Harbinger Down': New trailer for creature feature". Entertainment Weekly. Retrieved 3 October 2018.
  113. ^ "'Harbinger Down' Review: A Bleak & Vanilla Creature Feature". bloody-disgusting.com. 31 July 2015. Retrieved 3 October 2018.
  114. ^ Raftery, Brian (5 October 2016). "If You Only Read One Comic This Month, Make It 'Paper Girls'". Wired. Retrieved 8 August 2019.
  115. ^ "Cosmo Sheldrake shares new single and tour dates". DIY. 2 February 2015. Retrieved 21 September 2019.
  116. Folk Radio UK
    - Folk Music Magazine
    . 2 February 2015. Retrieved 21 September 2019.
  117. ^ "The Scientific Truth About Ripper the 'Star Trek' Tardigrade Is a Huge Relief". 10 October 2017. Retrieved 5 September 2018.
  118. ^ Salzberg, Steven. "New 'Star Trek' Series Makes Massive Science Blunder". Forbes. Retrieved 5 September 2018.
  119. ^ Placido, Dani Di. "'South Park' Review: Cartman Creates A Monster In 'Moss Piglets'". Forbes. Retrieved 29 July 2018.
  120. ^ "'South Park' season 21 episode 8 live stream: 'Moss Piglets'". 15 November 2017. Retrieved 29 July 2018.
  121. ^ Nicole Yang (22 October 2018). "Kyrie Irving got a credit in the most recent episode of 'Family Guy'. Meet "Vernon The Water Bear."". Boston Globe Media Partners, LLC. Retrieved 22 October 2018.
  122. ^ Marcus Stewart (21 March 2021). "How Sam & Max: This Time It's Virtual! Brings The Comedic Crime-Fighting Duo To VR". Game Informer. Retrieved 21 March 2021.

External links