Thromboxane receptor

Source: Wikipedia, the free encyclopedia.
(Redirected from
Thromboxane receptor antagonist
)
TBXA2R
Available structures
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001060
NM_201636

NM_001277265
NM_009325
NM_001358512

RefSeq (protein)

NP_001051
NP_963998

NP_001264194
NP_033351
NP_001345441

Location (UCSC)Chr 19: 3.59 – 3.61 MbChr 10: 81.16 – 81.17 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

The thromboxane receptor (TP) also known as the prostanoid TP receptor is a protein that in humans is encoded by the TBXA2R gene, The thromboxane receptor is one among the five classes of prostanoid receptors[5] and was the first eicosanoid receptor cloned.[6] The TP receptor derives its name from its preferred endogenous ligand thromboxane A2.[5]

Gene

The

exons.[7] TBXA2R codes for a member of the G protein-coupled super family of seven-transmembrane receptors.[8][9]


Heterogeneity

adenylate cyclase activity and thereby very different cellular responses.[6] Differences in their C-terminal tail sequence also allow for significant differences in the two receptors internalization and thereby desensitization (i.e. loss of G protein- and therefore cell-stimulating ability) after activation by an agonist; TPβ but not TPα undergoes agonist-induced internalization.[11]

The expression of α and β isoforms is not equal within or across different cell types.

adenyl cyclase. The latter effect on adenyl cyclase may serve to suppress TPα's cell stimulating actions and thereby some of its potentially deleterious actions.[12]

Mice and rats express only the TPα isoform. Since these rodents are used as animal models to define the functions of genes and their products, their failure to have two TP isoforms has limited understanding of the individual and different functions of each TP receptor isoform.[13]

Tissue distribution

Historically, TP receptor involvement in blood platelet function has received the greatest attention. However, it is now clear that TP receptors exhibit a wide distribution in different cell types and among different organ systems.[9] For example, TP receptors have been localized in cardiovascular, reproductive, immune, pulmonary and neurological tissues, among others.[9][14]

Organ/Tissue Cells/Cell lines
TP Receptor Distribution[9] Lung, Spleen, Uterus, Placenta, Aorta, Heart, Intestine, Liver, Eye, Thymus, Kidney, Spinal Cord, Brain Platelets, Blood Monocytes, Glomerular mesangial cells, Oligodendrocytes, Cardiac myocytes, Afferent Sympathetic Nerve Endings in the Heart, Epithelial cells, Hela cells, Smooth muscle cells, Endothelial cells, Trophoblasts, Schwann cells, Astrocytes, Megakaryocytes, Kupffer cells, Human erythroleukemic megakaryocyte (HEL), K562 (Human chronic myelogenous leukemia) cells, Hepatoblastoma HepG2 cells, Immature thymocytes, EL-4 (mouse T cell line), astrocytoma cells

TP receptor ligands

Activating ligands

Standard

partial agonists of the TP receptor. In animal models and human tissues, they act through TP to promote platelet responses and stimulate blood vessel contraction.[15] Synthetic analogs of TXA2 that activate TP but are relatively resistant to spontaneous and metabolic degradation include SQ 26655, AGN192093, and EP 171, all of which have binding and activating potencies for TP similar to I-BOP.[13][16][17]

Inhibiting ligands

Several synthetic compounds bind to, but do not activate, TP and thereby inhibit its activation by activating ligands. These

thromboxane synthase inhibitors.[18] This seemingly paradoxical result may reflect the ability of PGH2, whose production is not blocked by the inhibitors, to substitute for TXA2 in activating TP.[13] Novel TP receptor antagonists that also have activity in reducing TXA2 production by inhibiting cyclooxygenases have been discovered and are in development for testing in animal models.[19]

Mechanism of cell stimulation

TP is classified as a contractile type of prostenoid receptor based on its ability to contract diverse types of smooth muscle-containing tissues such as those of the lung, intestines, and uterus.[20] TP contracts smooth muscle and stimulates various response in a wide range of other cell types by coupling with and mobilizing one or more families of the G protein class of receptor-regulated cell signaling molecules. When bound to TXA2, PGH2, or other of its agonists, TP mobilizes members of the:[14][21][22]

Following its activation of these pathways, the TP receptors's cell-stimulating ability rapidly reverses by a process termed

heterologous desensitization. For example, prostacyclin I2 (PGI2)-induced activation of its prostacyclin receptor (IP) and prostaglandin D2-induced activation of its prostaglandin DP1 receptor cause TP receptor desensitization by activating protein kinases A while prostaglandin F2alpha-induced activation of its prostaglandin F receptor and prostaglandin E2-induced activation of its prostaglandin EP1 receptor receptor desensitizes TP by activating protein kinases C. These desensitization responses serve to limit the action of receptor agonists as well as the overall extent of cell excitation.[12]

In addition to its ability to down-regulate TPα, the IP receptor activates cell signaling pathways that counteract those activated by TP. Furthermore, the IP receptor can physically unite with the TPα receptor to form an IP-TPα heterodimer complex which, when bound by TXA2, activates predominantly IP-coupled cell signal pathways. The nature and extent of many cellular responses to TP receptor activation are thereby modulated by the IP receptor and this modulation may serve to limit the potentially deleterious effects of TP receptor activation (see following section on Functions).[12][13]

Functions

Studies using animals genetically engineered to lack the TP receptor and examining the actions of this receptor's agonists and antagonists in animals and on animal and human tissues indicate that TP has various functions in animals and that these functions also occur, or serve as a paradigm for further study, in humans.

Platelets

Human and animal

platelets stimulated by various agents such as thrombin produce TXA2. Inhibition of this production greatly reduces the platelets final adhesion aggregation and degranulation (i.e. secretion of its granule contents) responses to the original stimulus. In addition, the platelets of mice lacking TP receptors have similarly defective adhesion, aggregation, and degranulation responses and these TP deficient mice cannot form stable blood clots and in consequence exhibit bleeding tendencies. TP, as studies show, is part of a positive feedback loop that functions to promote platelet adhesion, aggregation, degranulation, and platelet-induced blood clotting-responses in vitro and in vivo. The platelet-directed functions of TP are in many respects opposite to those of the IP receptor. This further indicates (see previous section) that the balance between the TXA2-TP and PGI2-IP axes contribute to regulating platelet function, blood clotting, and bleeding.[14][13]

Cardiovascular system

Animal model studies indicate that TP receptor activation contracts vascular smooth muscle cells and acts on cardiac tissues to increase heart rate, trigger

ApoE gene knockout mice.[12][13][14][23] In addition, TP receptor antagonists lessen myocardial infarct size in various animal models of this disease and block the cardiac dysfunction caused by extensive tissue ischemia in animal models of remote ischemic preconditioning.[24] TP thereby has wide-ranging functions that tend to be detrimental to the cardiovascular network in animals and, most likely, humans. However, TP functions are not uniformly injurious to the cardiovascular system: TP receptor-depleted mice show an increase in cardiac damage as well as mortality due to trypanosoma cruzi infection. The mechanisms behind this putative protective effect and its applicability to humans is not yet known.[14]

20-Hydroxyeicosatetraenoic acid (20-HETE), a product of arachidonic acid formed by Cytochrome P450 omega hydroxylases,[25] and certain isoprostanes, which form by non-enzymatic free radical attack on arachidonic acid,[17] constrict rodent and human artery preparations by directly activating TP. While significantly less potent than thromboxane A2 in activating this receptor, studies on rat and human cerebral artery preparations indicate that increased blood flow through these arteries triggers production of 20-HETE which in turn binds TP receptors to constrict these vessels and thereby reduce their blood blow. Acting in the latter capacity, 20-HETE, it is proposed, functions as a TXA2 analog to regulate blood flow to the brain and possibly other organs.[15][26] Isoprostanes form in tissues undergoing acute or chronic oxidative stress such as occurs at sites of inflammation and the arteries of diabetic patients.[17] High levels of isoprostanes form in ischemic or otherwise injured blood vessels and acting through TP, can stimulate arterial inflammation and smooth muscle proliferation; this isoprostane-TP axis is proposed to contribute to the development of atherosclerosis and thereby heart attacks and strokes in humans.[17][19]

Lung allergic reactivity

TP receptor activation contracts bronchial smooth muscle preparations obtained from animal models as well as humans and contracts airways in animal models.

chronic obstructive lung diseases
in humans.

Uterus

Along with

PGF2α acting through its FP receptor, TXA2 acting through TP contracts uterine smooth muscle preparations from rodents and humans. Since the human uterus loses its sensitivity to PGP2α but not to TXA2 during the early stages of labor in vaginal childbirth, TP agonists, it is suggested, might be useful for treating preterm labor failures.[14]

Immune system

Activation of TP receptors stimulates vascular endothelial cell pro-inflammatory responses such as increased expression of cell surface adhesion proteins (i.e.

acquired immunity in mice. Further studies are needed to translate these mouse studies to humans.[14][29][30]

Cancer

Increased expression of cyclooxygenases and their potential involvement in the progression of various human cancers have been described. Some studies suggest that the TXA2 downstream metabolite of these cyclooxygenases along with its TP receptor contribute to mediating this progression. TP activation stimulates tumor cell proliferation, migration, neovascularization, invasiveness, and metastasis in animal models, animal and human cell models, and/or human tissue samples in cancers of the prostate, breast, lung, colon, brain, and bladder.[14][31] These findings, while suggestive, need translational studies to determine their relevancy to the cited human cancers.

Clinical significance

Isolated cases of humans with mild to moderate bleeding tendencies have been found to have mutations in TP that are associated with defects in this receptors binding of TXA2 analogs, activating cell signal pathways, and/or platelet functional responses not only to TP agonists but also to agents that stimulate platelets by TP-independent mechanisms (see Genomics section below).[15]

Drugs in use targeting TP

TP receptor antagonist seratrodast is marketed in Japan and China for the treatment of asthma. Picotamide, a dual inhibitor of TP and TXA2 synthesis, is licensed in Italy for the treatment of clinical arterial thrombosis and peripheral artery disease.[15] These drugs are not yet licensed for use in other countries.

Clinical trials

While functional roles for TP receptor signaling in diverse homeostatic and pathological processes have been demonstrated in animal models, in humans these roles have been demonstrated mainly with respect to platelet function, blood clotting, and hemostasis. TP has also been proposed to be involved in human: blood pressure and organ blood flow regulation; essential and pregnancy-induced hypertension; vascular complications due to sickle cell anemia; other cardiovascular diseases including heart attack, stroke, and peripheral artery diseases; uterine contraction in childbirth; and modulation of innate and adaptive immune responses including those contributing to various allergic and inflammatory diseases of the intestine, lung, and kidney.[9] However, many of the animal model and tissue studies supporting these suggested functions have yet to be proven directly applicable to human diseases. Studies to supply these proofs rest primarily on determining if TP receptor antagonists are clinically useful. However, these studies face issues that drugs which indirectly target TP (e.g. Nonsteroidal anti-inflammatory drugs that block TXA2 production) or which circumvent TP (e.g. P2Y12 antagonists that inhibit platelet activation and corticosteroids and cysteinyl leukotriene receptor 1 antagonists that suppress allergic and/or inflammatory reactions) are effective treatments for many putatively TP-dependent diseases. These drugs are likely to be cheaper and may prove to have more severe side effects that TP-targeting drugs.[14] These considerations may help to explain why relatively few studies have examined the clinical usefulness of TP-targeting drugs. The following translation studies on TP antagonists have been conducted or are underway:[27][19]

  • In a non-randomized, uncontrolled examination, 4 weeks of treatment with TP receptor antagonist AA-2414 significantly reduced bronchial reactivity in asthmatic patients. A follow-up
    RANTES, CCL3, CCL7, and eotaxin
    ).
  • A phase 3 study, TP antagonist Terutroban was tested against aspirin as a preventative of recurrent as well as new ischemia events in patients with recent strokes or transient ischemic attacks. The study did not meet its primary end points compared to aspirin-treated controls and was stopped; patients on the drug experienced significant increases in minor bleeding episodes.
  • A study comparing the safety and efficacy of TP antagonist ridogrel to aspirin as adjunctive therapy in the emergent treatment of heart attack with the clot dissolving agent streptokinase found that ridogrel gave no significant enhancement of clot resolution but was associated with a lower incidence of recurrent heart attack, recurrent angina, and new strokes without causing excess bleeding **complications.
  • TP antagonist Ifetroban is in phase 2 clinical development for the treatment of kidney failure.

In addition to the above TP antagonists, drugs that have dual inhibitory actions in that they block not only TP but also block the enzyme responsible for making TXA22, Thromboxane-A synthase, are in clinical development. These dual inhibitor studies include:[15]

  • A long-term study in diabetic patients compared dual inhibitor picotamide to aspirin for improving ischemia symptoms caused be peripheral artery diseases found not difference in primary end points but also found that picotamide therapy significantly reduced cardiovascular mortality over a 2-year trial.
  • A phase 2 clinical trial of Dual inhibitor Terbogrel to treat vasoconstriction was discontinued due to its induction of leg pain.
  • Dual inhibitor EV-077 is in clinical phase II development.

Genomics

Several isolated and/or inherited cases of patients suffering a mild to moderately severe bleeding diathesis have been found to be associated with mutations in 'the 'TBXA2R gene that lead to abnormalities in the expression, subcellular location, or function of its TP product. These cases include:[15][32]

  • A missense mutation causing tryptophan (Trp) to be replaced by cysteine (Cys) as its 29th amino acid (i.e. Trp29Cys) yields a TP which is less responsive to stimulation by a TP agonist, less able to activate its Gq G protein target, and poorly expressed at the cell's surface. Some or perhaps all of these faults may reflect the failure of this mutated TP to form TP-TP dimers.
  • An Asn42Ser mutation yields a TP that remains in the cell's Golgi apparatus and fails to be expressed at the cell surface.
  • An Asp304Asn mutation yields a TP that exhibits decreased binding and responsiveness to a TP agonist.
  • An Arg60Leu mutation yields a TP that is normally expressed and normally binds a TP agonist but fails to activate its Gq G protein target.
  • A missense mutation that replaces thymine (T) with guanine (G) as the 175 nucleotide (c.175C>T) in the TBXA2R gene as well as Cc87G>C and c.125A>G mutations yield TP's that are poorly expressed.
  • A c.190G>A mutation yields a TP that binds a TP agonist poorly.
  • A guanine (G) duplication at the 167th nucleotide causes a Frameshift mutation (c.165dupG) at amino acid #58 to yield a poorly expressed TP mutant.

Single nucleotide polymorphism (SNP) variations in the TBXA2R gene have been associated with allergic and cardiovascular diseases; these include:[33][34]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000006638 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000034881 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^
    S2CID 20514470
    .
  6. ^ .
  7. ^ "TBXA2R thromboxane A2 receptor [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2023-09-09.
  8. PMID 7635958
    .
  9. ^ .
  10. .
  11. ^ .
  12. ^ .
  13. ^ .
  14. ^ .
  15. ^ .
  16. ^ "TP receptor | Prostanoid receptors | IUPHAR/BPS Guide to PHARMACOLOGY".
  17. ^
    PMID 24646155
    .
  18. ^ .
  19. ^ .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. ^ .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .

Further reading

External links

  • "Prostanoid Receptors: TP". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology. Archived from the original on 2016-03-03. Retrieved 2008-12-09.