Tibia

Source: Wikipedia, the free encyclopedia.
(Redirected from
Tibia bones
)
tibiae
Identifiers
Latin(os) tibia
MeSHD013977
TA98A02.5.06.001
TA21397
FMA24476
Anatomical terms of bone]

The tibia (

ankle. The tibia is found on the medial side of the leg next to the fibula and closer to the median plane. The tibia is connected to the fibula by the interosseous membrane of leg, forming a type of fibrous joint called a syndesmosis with very little movement. The tibia is named for the flute tibia. It is the second largest bone in the human body, after the femur. The leg bones are the strongest long bones
as they support the rest of the body.

Structure

In

human anatomy, the tibia is the second largest bone next to the femur
. As in other vertebrates the tibia is one of two bones in the lower leg, the other being the fibula, and is a component of the knee and ankle joints.

The

ossification
or formation of the bone starts from three centers, one in the shaft and one in each extremity.

The tibia is categorized as a

foot
. The tibia is most contracted in the lower third and the distal extremity is smaller than the proximal.

Upper extremity

Condyles of tibia

Upper surface of right tibia. (Anterior is at top.)
Knee

The proximal or upper extremity of the tibia is expanded in the transverse plane with a

articulate with the femur to form the tibiofemoral joint, the weightbearing part of the kneejoint.[1]

The medial and lateral condyle are separated by the

posterior part. The anterolateral region of the anterior intercondylar area are perforated by numerous small openings for nutrient arteries.[1]
The articular surfaces of both condyles are concave, particularly centrally. The flatter outer margins are in contact with the menisci. The medial condyles superior surface is oval in form and extends laterally onto the side of
lateral intercondylar tubercle. The posterior surface of the medial condyle bears a horizontal groove for part of the attachment of the semimembranosus muscle, whereas the lateral condyle has a circular facet for articulation with the head of the fibula.[1]
Beneath the condyles is the

Facets

The superior articular surface presents two smooth articular facets.

  • The medial facet, oval in shape, is slightly concave from side to side, and from before backward.
  • The lateral, nearly circular, is concave from side to side, but slightly convex from before backward, especially at its posterior part, where it is prolonged on to the posterior surface for a short distance.

The central portions of these facets articulate with the condyles of the femur, while their peripheral portions support the menisci of the knee joint, which here intervene between the two bones.

Intercondyloid eminence

Between the articular facets in the intercondylar area, but nearer the posterior than the anterior aspect of the bone, is the intercondyloid eminence (spine of tibia), surmounted on either side by a prominent tubercle, on to the sides of which the articular facets are prolonged; in front of and behind the intercondyloid eminence are rough depressions for the attachment of the anterior and posterior cruciate ligaments and the menisci.

Surfaces

The anterior surfaces of the condyles are continuous with one another, forming a large somewhat flattened area; this area is triangular, broad above, and perforated by large vascular foramina; narrow below where it ends in a large oblong elevation, the tuberosity of the tibia, which gives attachment to the

bursa
intervenes between the deep surface of the ligament and the part of the bone immediately above the tuberosity.

Posteriorly, the condyles are separated from each other by a shallow depression, the posterior intercondyloid fossa, which gives attachment to part of the

semimembranosus
.

Its medial surface is convex, rough, and prominent; it gives attachment to the medial collateral ligament.

The lateral condyle presents posteriorly a flat articular facet, nearly circular in form, directed downward, backward, and lateralward, for articulation with the head of the fibula. Its lateral surface is convex, rough, and prominent in front: on it is an eminence, situated on a level with the upper border of the tuberosity and at the junction of its anterior and lateral surfaces, for the attachment of the

biceps femoris
is inserted.

Shaft

Bones of the right leg. Anterior surface

The shaft or body of the tibia is triangular in cross-section and forms three borders: an anterior, medial, and lateral or interosseous border. These three borders form three surfaces: the medial, lateral, and posterior.[2] The forward flat part of the tibia is called the fibia, often confused with the fibula.[3][failed verification]

Borders

The anterior crest or border, the most prominent of the three, commences above at the tuberosity, and ends below at the anterior margin of the medial malleolus. It is sinuous and prominent in the upper two-thirds of its extent, but smooth and rounded below; it gives attachment to the deep fascia of the leg.

The medial border is smooth and rounded above and below, but more prominent in the center. It begins at the back part of the medial condyle, and ends at the posterior border of the medial malleolus; its upper part gives attachment to the tibial collateral ligament of the knee-joint to the extent of about 5 cm., and insertion to some fibers of the

flexor digitorum longus muscles
take origin.

The interosseous crest or lateral border is thin and prominent, especially its central part, and gives attachment to the interosseous membrane; it commences above in front of the fibular articular facet, and bifurcates below, to form the boundaries of a triangular rough surface, for the attachment of the interosseous ligament connecting the tibia and fibula.

Surfaces

The medial surface is smooth, convex, and broader above than below; its upper third, directed forward and medialward, is covered by the

Semitendinosus, all of which are inserted nearly as far forward as the anterior crest; in the rest of its extent it is subcutaneous
.

The lateral surface is narrower than the medial; its upper two-thirds present a shallow groove for the origin of the Tibialis anterior; its lower third is smooth, convex, curves gradually forward to the anterior aspect of the bone, and is covered by the tendons of the

Extensor digitorum longus
, arranged in this order from the medial side.

The posterior surface presents, at its upper part, a prominent ridge, the popliteal line, which extends obliquely downward from the back part of the articular facet for the fibula to the medial border, at the junction of its upper and middle thirds; it marks the lower limit of the insertion of the

Flexor hallucis longus
. Immediately below the popliteal line is the nutrient foramen, which is large and directed obliquely downward.

Lower extremity

Lower extremity of right tibia seen from the front
Lower extremity of right tibia seen from the back

The distal end of the tibia is much smaller than the proximal end and presents five surfaces; it is prolonged downward on its medial side as a strong pyramidal process, the medial malleolus. The lower extremity of the tibia together with the fibula and talus forms the ankle joint.

Surfaces

The inferior articular surface is quadrilateral, and smooth for articulation with the talus. It is concave from before backward, broader in front than behind, and traversed from before backward by a slight elevation, separating two depressions. It is continuous with that on the medial malleolus.

The anterior surface of the lower extremity is smooth and rounded above, and covered by the tendons of the Extensor muscles; its lower margin presents a rough transverse depression for the attachment of the articular capsule of the ankle-joint.

The posterior surface is traversed by a shallow groove directed obliquely downward and medialward, continuous with a similar groove on the posterior surface of the talus and serving for the passage of the tendon of the

Flexor hallucis longus
.

The lateral surface presents a triangular rough depression for the attachment of the inferior interosseous ligament connecting it with the fibula; the lower part of this depression is smooth, covered with cartilage in the fresh state, and articulates with the fibula. The surface is bounded by two prominent borders (the anterior and posterior colliculi), continuous above with the interosseous crest; they afford attachment to the anterior and posterior ligaments of the lateral malleolus.

The medial surface -- see

medial malleolus
for details.

Fractures

Ankle fractures of the tibia have several classification systems based on location or mechanism:

Blood supply

The tibia is supplied with blood from two sources: A nutrient artery, as the main source, and periosteal vessels derived from the anterior tibial artery.[4]

Joints

The tibia is a part of four joints; the knee, ankle,

inferior tibiofibular joint
.

In the knee the tibia forms one of the two

articulations with the femur, often referred to as the tibiofemoral components of the knee joint.[5][6]; it is the weightbearing part of the knee joint.[2]
The tibiofibular joints are the articulations between the tibia and fibula which allows very little movement.[citation needed] The The distal tibiofibular joint (tibiofibular syndesmosis) is formed by the rough, convex surface of the medial side of the distal end of the fibula, and a rough concave surface on the lateral side of the tibia.[2]

The part of the ankle joint known as the talocrural joint, is a synovial hinge joint that connects the distal ends of the tibia and fibula in the lower limb with the proximal end of the talus. The articulation between the tibia and the talus bears more weight than between the smaller fibula and the talus.[citation needed]

Plan of ossification of the tibia. From three centers.
Epiphysial lines of tibia and fibula in a young adult. Anterior aspect.

Development

The tibia is

ossified from three centers: a primary center for the diaphysis (shaft) and a secondary center for each epiphysis
(extremity). Ossification begins in the center of the body, about the seventh week of fetal life, and gradually extends toward the extremities.

The center for the upper epiphysis appears before or shortly after birth at close to 34 weeks gestation; it is flattened in form, and has a thin tongue-shaped process in front, which forms the

tuberosity
; that for the lower epiphysis appears in the second year.

The lower epiphysis fuses with the tibial shaft at about the eighteenth, and the upper one fuses about the twentieth year.

Two additional centers occasionally exist, one for the tongue-shaped process of the upper epiphysis, which forms the tuberosity, and one for the

medial malleolus
.

Function

Muscle attachments

Muscle Direction Attachment[7]
Tensor fasciae latae muscle Insertion Gerdy's tubercle
Quadriceps femoris muscle
Insertion Tuberosity of the tibia
Sartorius muscle Insertion Pes anserinus
Gracilis muscle Insertion Pes anserinus
Semitendinosus muscle Insertion Pes anserinus
Horizontal head of the semimembranosus muscle Insertion Medial condyle
Popliteus muscle Insertion Posterior side of the tibia over the soleal line
Tibialis anterior muscle Origin Lateral side of the tibia
Extensor digitorum longus muscle Origin Lateral condyle
Soleus muscle Origin Posterior side of the tibia under the soleal line
Flexor digitorum longus muscle Origin Posterior side of the tibia under the soleal line

Strength

The tibia has been modeled as taking an axial force during walking that is up to 4.7 bodyweight. Its bending moment in the sagittal plane in the late stance phase is up to 71.6 bodyweight times millimetre.[8]

Clinical significance

Fracture

of the tibia can be divided into those that only involve the tibia; bumper fracture, Segond fracture, Gosselin fracture, toddler's fracture, and those including both the tibia and fibula; trimalleolar fracture, bimalleolar fracture, Pott's fracture
.

Society and culture

In Judaism, the tibia, or shankbone, of a goat or sheep is used in the Passover Seder plate.

Other animals

The structure of the tibia in most other

patellar ligament attaches in mammals, is instead the point for the tendon of the quadriceps muscle in reptiles, birds, and amphibians, which have no patella.[9]

Additional images

  • Shape of right tibia
    Shape of right tibia
  • 3D image
    3D image
  • Longitudinal section of tibia showing interior
    Longitudinal section of tibia showing interior
  • Right knee-joint. Anterior view.
    Right knee-joint. Anterior view.
  • Right knee joint from the front, showing interior ligaments
    Right knee joint from the front, showing interior ligaments
  • Left knee joint from behind, showing interior ligaments
    Left knee joint from behind, showing interior ligaments
  • Left talocrural joint
    Left talocrural joint
  • Coronal section through right talocrural and talocalcaneal joints
    Coronal section through right talocrural and talocalcaneal joints
  • Dorsum of Foot. Ankle joint. Deep dissection
    Dorsum of Foot. Ankle joint. Deep dissection
  • Dorsum of Foot. Ankle joint. Deep dissection
    Dorsum of Foot. Ankle joint. Deep dissection
  • Ankle joint. Deep dissection. Anterior view
    Ankle joint. Deep dissection. Anterior view
  • Bones of the right leg. Anterior surface
    Bones of the right leg. Anterior surface
  • Bones of the right leg. Posterior surface
    Bones of the right leg. Posterior surface
  • Dorsum of Foot. Ankle joint. Deep dissection.
    Dorsum of Foot. Ankle joint. Deep dissection.
  • Ankle joint. Deep dissection.
    Ankle joint. Deep dissection.
  • Ankle joint. Deep dissection.
    Ankle joint. Deep dissection.
  • Ankle joint. Deep dissection.
    Ankle joint. Deep dissection.
  • Ankle joint. Deep dissection.
    Ankle joint. Deep dissection.
  • Tibia Anatomy

See also

References

Public domain This article incorporates text in the public domain from page 256 of the 20th edition of Gray's Anatomy (1918)