Transpression

Source: Wikipedia, the free encyclopedia.
Simple model for transpression: strike-slip zone with an additional and simultaneous shortening across the zone. Also induces vertical uplift.

In

plate boundaries is characterized by oblique convergence.[1] More locally, transpression occurs within restraining bends in strike-slip fault zones
.

Transpressional structures

Transpressional shear zones are characterized by an association of structures that suggest zone-normal shortening and zone-parallel shearing. Commonly developed features include transposition foliations, lineations, stylolites, folds, and reverse faults. Pure shear-dominated transpression usually gives steep lineations, while simple shear-dominated transpression favors horizontal lineations.[2] It is also common for non-vertical transpressional zones to have a significant component of shearing parallel to the dipline of the zone boundary. In these zones, the lineations are between horizontal and vertical. The complete geometry presented by all structural elements in the zone is used to constrain the actual boundary displacements. .

Restraining bend

A contractional duplex that has developed at the bend/stepover along a strike-slip fault.
Altun Shan mountains formed at a restraining bend on the sinistral Altyn Tagh fault

A fault bend, or

fault stepover, forms when individual segments of the fault overlap and link together. The type of structures which form along the strike-slip fault depend on the sense of slip relative to the sense of stepping. When a sinistral fault steps to the right or a dextral fault steps to the left, a restraining bend is formed.[2] Geologists may also refer to a restraining bend as a left bend. These are areas of positive relief (topographic uplift), crustal shortening, and exhumation of crystalline basement. As seen in deeply eroded outcrop exposures or from subsurface geophysical surveys, restraining bends commonly define positive flower structures. In plan view we see them form contractional strike-slip duplexes, subparallel reverse or oblique-slip contractional faults that are bounded by two strike-slip segments. Restraining bends are widespread on the Earth's surface, from sub-outcrop-scale examples to large scale mountain ranges. They have been theorized to occur on extraterrestrial bodies, like Jupiter's icy moon Europa and on Venus.[3]

Transpressional regions

  • Altai Mountains (Western Mongolia and Southern Siberia, Russia)[4]
  • Western Aleutian Subduction Zone[5]
  • Gobi Altai (Mongolia)[6]
  • "Big Bend" of the
    San Andreas Fault Zone, (California, USA)[7]
  • Alpine Fault in New Zealand[8]
  • Galeh–Doz pluton (Sanandaj–Sirjan Zone, Iran)[9]

See also

References