Triassic
Triassic | |
---|---|
Northern Calcareous Alps, Austria 47°29′02″N 11°31′50″E / 47.4839°N 11.5306°E | |
Upper GSSP ratified | 2010[7] |
The Triassic (
The Triassic began in the wake of the Permian–Triassic extinction event, which left the Earth's biosphere impoverished; it was well into the middle of the Triassic before life recovered its former diversity. Three categories of organisms can be distinguished in the Triassic record: survivors from the extinction event, new groups that flourished briefly, and other new groups that went on to dominate the Mesozoic Era.
The vast supercontinent of Pangaea dominated the globe during the Triassic, but in the latest Triassic (Rhaetian) and Early Jurassic it began to gradually rift into two separate landmasses: Laurasia to the north and Gondwana to the south. The global climate during the Triassic was mostly hot and dry,[12] with deserts spanning much of Pangaea's interior. However, the climate shifted and became more humid as Pangaea began to drift apart. The end of the period was marked by yet another major mass extinction, the Triassic–Jurassic extinction event, that wiped out many groups, including most pseudosuchians, and allowed dinosaurs to assume dominance in the Jurassic.
Etymology
The Triassic was named in 1834 by Friedrich August von Alberti, after a succession of three distinct rock layers (Greek triás meaning 'triad') that are widespread in southern Germany: the lower Buntsandstein (colourful sandstone), the middle Muschelkalk (shell-bearing limestone) and the upper Keuper (coloured clay).[13]
-
Early Triassic sandstone (Buntsandstein) near Stadtroda, Germany
-
Middle Triassic Muschelkalk (shell-bearing limestone) near Dörzbach, Germany
Dating and subdivisions
On the
Series/Epoch | Faunal stage | Time span |
---|---|---|
Upper/Late Triassic (Tr3) | Rhaetian | (205.7 – 201.4 ± 0.2 Mya) |
Norian | (227.3 – 205.7 Mya) | |
Carnian | (237 – 227.3 Mya) | |
Middle Triassic (Tr2) | Ladinian | (241.464 ± 0.28 – 237 Mya) |
Anisian | (246.7 – 241.464 ± 0.28 Mya) | |
Lower/Early Triassic (Scythian) | Olenekian | (249.9 – 246.7 Mya) |
Induan | (251.902 ± 0.024 – 249.9 Mya) |
Paleogeography


During the Triassic, almost all the Earth's land mass was concentrated into a single supercontinent, Pangaea (lit. 'entire land').[14] This supercontinent was more-or-less centered on the equator and extended between the poles, though it did drift northwards as the period progressed. Southern Pangea, also known as Gondwana, was made up by closely-appressed cratons corresponding to modern South America, Africa, Madagascar, India, Antarctica, and Australia. North Pangea, also known as Laurussia or Laurasia, corresponds to modern-day North America and the fragmented predecessors of Eurasia.[citation needed]
The western edge of Pangea lay at the margin of an enormous ocean, Panthalassa (lit. 'entire sea'), which roughly corresponds to the modern Pacific Ocean. Practically all deep-ocean crust present during the Triassic has been recycled through the subduction of oceanic plates, so very little is known about the open ocean from this time period. Most information on Panthalassan geology and marine life is derived from island arcs and rare seafloor sediments accreted onto surrounding land masses, such as present-day Japan and western North America.[citation needed]
The eastern edge of Pangea was encroached upon by a pair of extensive oceanic basins: The
Because a supercontinent has less shoreline compared to a series of smaller continents, Triassic marine deposits are relatively uncommon on a global scale. A major exception is in Western Europe, where the Triassic was first studied. The northeastern margin of Gondwana was a stable passive margin along the Neo-Tethys Ocean, and marine sediments have been preserved in parts of northern India and Arabia.[16] In North America, marine deposits are limited to a few exposures in the west.
Scandinavia
During the Triassic peneplains are thought to have formed in what is now Norway and southern Sweden.[20][21][22] Remnants of this peneplain can be traced as a tilted summit accordance in the Swedish West Coast.[20] In northern Norway Triassic peneplains may have been buried in sediments to be then re-exposed as coastal plains called strandflats.[21] Dating of illite clay from a strandflat of Bømlo, southern Norway, have shown that landscape there became weathered in Late Triassic times (c. 210 million years ago) with the landscape likely also being shaped during that time.[23]
Paleooceanography
Eustatic sea level in the Triassic was consistently low compared to the other geological periods. The beginning of the Triassic was around present sea level, rising to about 10–20 metres (33–66 ft) above present-day sea level during the Early and Middle Triassic. Sea level rise accelerated in the Ladinian, culminating with a sea level up to 50 metres (164 ft) above present-day levels during the Carnian. Sea level began to decline in the Norian, reaching a low of 50 metres (164 ft) below present sea level during the mid-Rhaetian. Low global sea levels persisted into the earliest Jurassic. The long-term sea level trend is superimposed by 22 sea level drop events widespread in the geologic record, mostly of minor (less than 25-metre (82 ft)) and medium (25–75-metre (82–246 ft)) magnitudes. A lack of evidence for Triassic continental ice sheets suggest that glacial eustasy is unlikely to be the cause of these changes.[24]
Climate
The Triassic continental interior climate was generally hot and dry, so that typical deposits are
The Triassic may have mostly been a dry period, but evidence exists that it was punctuated by several episodes of increased rainfall in tropical and subtropical latitudes of the Tethys Sea and its surrounding land.
Early Triassic
The Early Triassic was the hottest portion of the entire Phanerozoic, seeing as it occurred during and immediately after the discharge of titanic volumes of greenhouse gases from the Siberian Traps. The Early Triassic began with the Permian-Triassic Thermal Maximum (PTTM) and was followed by the brief Dienerian Cooling (DC) from 251 to 249 Ma, which was in turn followed by the Latest Smithian Thermal Maximum (LSTT) around 249 to 248 Ma. During the Latest Olenekian Cooling (LOC), from 248 to 247 Ma, temperatures cooled by about 6 °C.[28]
Middle Triassic
The Middle Triassic was cooler than the Early Triassic, with temperatures falling over most of the Anisian, with the exception of a warming spike in the latter portion of the stage.[29] From 242 to 233 Ma, the Ladinian-Carnian Cooling (LCC) ensued.[28]
Late Triassic
At the beginning of the Carnian, global temperatures continued to be relatively cool.
Flora

Land plants
During the Early Triassic,
While having first appeared during the Permian, the extinct seed plant group
Coal

No known coal deposits date from the start of the Triassic Period. This is known as the Early Triassic "coal gap" and can be seen as part of the Permian–Triassic extinction event.[43] Possible explanations for the coal gap include sharp drops in sea level at the time of the Permo-Triassic boundary;[44] acid rain from the Siberian Traps eruptions or from an impact event that overwhelmed acidic swamps; climate shift to a greenhouse climate that was too hot and dry for peat accumulation; evolution of fungi or herbivores that were more destructive of wetlands; the extinction of all plants adapted to peat swamps, with a hiatus of several million years before new plant species evolved that were adapted to peat swamps;[43] or soil anoxia as oxygen levels plummeted.[45]
Phytoplankton
Before the Permian extinction, Archaeplastida (red and green algae) had been the major marine phytoplanktons since about 659–645 million years ago,[46] when they replaced marine planktonic cyanobacteria, which first appeared about 800 million years ago, as the dominant phytoplankton in the oceans.[47] In the Triassic, secondary endosymbiotic algae became the most important plankton.[48]
Fauna
Marine invertebrates
In
Insects
Aquatic insects rapidly diversified during the Middle Triassic, with this time interval representing a crucial diversification for Holometabola, the clade containing the majority of modern insect species.[52]
Fish

In the wake of the
Amphibians

The first Lissamphibians (modern amphibians) appear in the Triassic, with the progenitors of the first frogs already present by the Early Triassic. However, the group as a whole did not become common until the Jurassic, when the temnospondyls had become very rare.
Most of the Reptiliomorpha, stem-amniotes that gave rise to the amniotes, disappeared in the Triassic, but two water-dwelling groups survived: Embolomeri that only survived into the early part of the period, and the Chroniosuchia, which survived until the end of the Triassic.
Reptiles
Archosauromorphs
The Permian–Triassic extinction devastated terrestrial life. Biodiversity rebounded as the
Rhynchosaurs, barrel-gutted herbivores, thrived for only a short period of time, becoming extinct about 220 million years ago. They were exceptionally abundant in the middle of the Triassic, as the primary large herbivores in many Carnian-age ecosystems. They sheared plants with premaxillary beaks and plates along the upper jaw with multiple rows of teeth. Allokotosaurs were iguana-like reptiles, including Trilophosaurus (a common Late Triassic reptile with three-crowned teeth), Teraterpeton (which had a long beak-like snout), and Shringasaurus (a horned herbivore which reached a body length of 3–4 metres (9.8–13.1 ft)).
One group of archosauromorphs, the
True archosaurs appeared in the early Triassic, splitting into two branches: Avemetatarsalia (the ancestors to birds) and Pseudosuchia (the ancestors to crocodilians). Avemetatarsalians were a minor component of their ecosystems, but eventually produced the earliest pterosaurs and dinosaurs in the Late Triassic. Early long-tailed pterosaurs appeared in the Norian and quickly spread worldwide. Triassic dinosaurs evolved in the Carnian and include early sauropodomorphs and theropods. Most Triassic dinosaurs were small predators and only a few were common, such as Coelophysis, which was 1 to 2 metres (3.3 to 6.6 ft) long. Triassic sauropodomorphs primarily inhabited cooler regions of the world.[63]
The large predator
Pseudosuchians were far more ecologically dominant in the Triassic, including large herbivores (such as
-
Tanystropheus, a long-necked tanystropheid
-
Proterosuchus, a crocodile-like early archosauriform from the Early Triassic
-
Staurikosaurus, one of the earliest dinosaurs, a member of the Triassic family Herrerasauridae
-
sauropodomorphs, or "prosauropods", of the Late Triassic
-
Coelophysis was one of the most abundant theropod dinosaurs in the Late Triassic
Marine reptiles

There were many types of marine reptiles. These included the
Other reptiles
Among other reptiles, the earliest
Synapsids
Three
During the Triassic, archosaurs displaced therapsids as the largest and most ecologically prolific terrestrial amniotes. This "Triassic Takeover" may have contributed to the evolution of mammals by forcing the surviving therapsids and their mammaliaform successors to live as small, mainly nocturnal insectivores. Nocturnal life may have forced the mammaliaforms to develop fur and a higher metabolic rate.[66]
-
Lystrosaurus was a widespread dicynodont and the most common land vertebrate during the Early Triassic, after animal life had been greatly diminished
-
cynodontfrom the Early Triassic.
Lagerstätten
Two
The
Triassic–Jurassic extinction event

The Triassic Period ended with a mass extinction, which was particularly severe in the oceans; the
Though the end-Triassic extinction event was not equally devastating in all terrestrial ecosystems, several important clades of crurotarsans (large archosaurian reptiles previously grouped together as the thecodonts) disappeared, as did most of the large labyrinthodont amphibians, groups of small reptiles, and most synapsids. Some of the early, primitive dinosaurs also became extinct, but more adaptive ones survived to evolve into the Jurassic. Surviving plants that went on to dominate the Mesozoic world included modern conifers and cycadeoids.
The cause of the Late Triassic extinction is uncertain. It was accompanied by huge

The number of Late Triassic extinctions is disputed. Some studies suggest that there are at least two periods of extinction towards the end of the Triassic, separated by 12 to 17 million years. But arguing against this is a recent study of North American faunas. In the Petrified Forest of northeast Arizona there is a unique sequence of late Carnian-early Norian terrestrial sediments. An analysis in 2002 found no significant change in the paleoenvironment.[72] Phytosaurs, the most common fossils there, experienced a change-over only at the genus level, and the number of species remained the same. Some aetosaurs, the next most common tetrapods, and early dinosaurs, passed through unchanged. However, both phytosaurs and aetosaurs were among the groups of archosaur reptiles completely wiped out by the end-Triassic extinction event.
It seems likely then that there was some sort of end-Carnian extinction, when several herbivorous archosauromorph groups died out, while the large herbivorous
These extinctions within the Triassic and at its end allowed the dinosaurs to expand into many niches that had become unoccupied. Dinosaurs became increasingly dominant, abundant and diverse, and remained that way for the next 150 million years. The true "Age of Dinosaurs" is during the following Jurassic and Cretaceous periods, rather than the Triassic.
See also
- Geologic time scale
- List of fossil sites (with link directory)
- Triassic land vertebrate faunachrons
- Phylloceratina
- Dinosaurs
Notes
- .
- PMID 17919771.
- ^ Retallack, G. J.; . Retrieved 2007-09-29.
- S2CID 35498132.
- ^ "International Chronostratigraphic Chart" (PDF). International Commission on Stratigraphy. December 2024. Retrieved January 1, 2025.
- . Retrieved 8 December 2020.
- S2CID 128552062.
- ^ "Triassic". Dictionary.com Unabridged (Online). n.d.
- ^ "International Stratigraphic Chart" (PDF). International Commission on Stratigraphy. June 2023. Retrieved 19 July 2023.
- ^ PMID 18198148.
- S2CID 13393888. Archived from the original(PDF) on 2014-06-24. Retrieved 2012-01-14.
- ^ "'Lethally Hot' Earth Was Devoid of Life – Could It Happen Again?". nationalgeographic.com. 19 October 2012. Archived from the original on October 20, 2012.
- ^ Friedrich von Alberti, Beitrag zu einer Monographie des bunten Sandsteins, Muschelkalks und Keupers, und die Verbindung dieser Gebilde zu einer Formation [Contribution to a monograph on the colored sandstone, shell limestone and mudstone, and the joining of these structures into one formation] (Stuttgart and Tübingen, (Germany): J. G. Cotta, 1834). Alberti coined the term "Trias" on page 324 :
"… bunter Sandstein, Muschelkalk und Keuper das Resultat einer Periode, ihre Versteinerungen, um mich der Worte E. de Beaumont's zu bedeinen, die Thermometer einer geologischen Epoche seyen, … also die bis jezt beobachtete Trennung dieser Gebilde in 3 Formationen nicht angemessen, und es mehr dem Begriffe Formation entsprechend sey, sie zu einer Formation, welche ich vorläufig Trias nennen will, zu verbinden."
( … colored sandstone, shell limestone, and mudstone are the result of a period; their fossils are, to avail myself of the words of E. de Beaumont, the thermometer of a geologic epoch; … thus the separation of these structures into 3 formations, which has been maintained until now, isn't appropriate, and it is more consistent with the concept of "formation" to join them into one formation, which for now I will name "trias".) - S2CID 249483335. Retrieved 1 December 2022.
- S2CID 244696034. Retrieved 10 January 2023.
- ^ ISBN 978-1-316-22552-3. Retrieved 2022-05-16.
- ISBN 978-0-7240-1250-3.
- ^ "Lecture 10 – Triassic: Newark, Chinle". rainbow.ldeo.columbia.edu.
- ^ Jacobs, Louis L. (1997). "African Dinosaurs". In Currie, Phillip J.; Padian, Kevin (eds.). Encyclopedia of Dinosaurs. Academic Press. pp. 2–4.
- ^ .
- ^ a b Olesen, Odleiv; Kierulf, Halfdan Pascal; Brönner, Marco; Dalsegg, Einar; Fredin, Ola; Solbakk, Terje (2013). "Deep weathering, neotectonics and strandflat formation in Nordland, northern Norway". Norwegian Journal of Geology. 93: 189–213.
- .
- PMID 28452366.
- S2CID 134477691.
- ^ a b Stanley, 452–53.
- S2CID 134145664. Retrieved 9 January 2023.
- .
- ^ S2CID 233579194. Retrieved 22 September 2023.
- . Retrieved 22 September 2023.
- S2CID 244847207. Retrieved 22 September 2023.
- ISSN 0091-7613. Retrieved 22 September 2023.
- S2CID 249528886. Retrieved 22 September 2023.
- ISSN 0031-0182. Retrieved 24 November 2023.
- PMID 32704030.
- PMID 32265448.
- ISSN 2296-6463.
- .
- ^ Mays, Chris; McLoughlin, Stephen (2020-02-25). "Caught between two mass extinctions: The rise and fall of Dicroidium". Deposits Mag. Retrieved 2023-09-23.
- .
- ISSN 1058-5893.
- PMID 28213347.
- ^ Hosher, WT Magaritz M Clark D (1987). "Events near the time of the Permian-Triassic boundary". Mod. Geol. 11: 155–80 [173–74].
- ^ .
- S2CID 8035040. Retrieved 24 November 2023.
- ISBN 978-0-8137-2399-0. Retrieved 14 December 2020.
- ^ "How snowball Earth gave rise to complex life – Cosmos Magazine". 16 August 2017.
- ^ "December: Phytoplankton | News | University of Bristol".
- ^ "The rise of algae in Cryogenian oceans and the emergence of animals – ResearchGate".
- S2CID 134733944. Retrieved 22 September 2023.
- . Retrieved 2012-09-16.
- . Retrieved 31 March 2023.
- PMID 30191177.
- ^ S2CID 5332637.
- .
- .
- .
- ^ Agnolin, F. L., Mateus O., Milàn J., Marzola M., Wings O., Adolfssen J. S., & Clemmensen L. B. (2018). Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland. Journal of Vertebrate PaleontologyJournal of Vertebrate Paleontology. e1439834
- S2CID 238781606.
- S2CID 130268582.
- ISBN 978-0-226-89333-4– via Google Books.
- ISBN 978-1-4051-4449-0– via Google Books.
- ISBN 978-1-84533-339-3.
- S2CID 254754419.
- ^ Scheyer et al. (2014): Early Triassic Marine Biotic Recovery: The Predators' Perspective. PLoS ONE https://doi.org/10.1371/journal.pone.0088987
- ISSN 0869-5938. Retrieved 13 August 2024 – via Springer Link.
- . Retrieved 24 November 2023.
- S2CID 256697946.
- PMID 28246643.
- ^ Nomade et al., 2007 Palaeogeography, Palaeoclimatology, Palaeoecology 244, 326–44.
- ^ Marzoli et al., 1999, Science 284. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province, pp. 618–620.
- ^ Hodych & Dunning, 1992.
- ^ "No Significant Nonmarine Carnian-Norian (Late Triassic) Extinction Event: Evidence From Petrified Forest National Park". gsa.confex.com. Archived from the original on 2003-11-06. Retrieved 2003-12-12.
References
- ISBN 0-521-40949-7)
- Ogg, Jim; June, 2004, Overview of Global Boundary Stratotype Sections and Points (GSSP's) Stratigraphy.org, Accessed April 30, 2006
- Stanley, Steven M. Earth System History. New York: W.H. Freeman and Company, 1999. ISBN 0-7167-2882-6
- Sues, Hans-Dieter & Fraser, Nicholas C. Triassic Life on Land: The Great Transition New York: Columbia University Press, 2010. Series: Critical Moments and Perspectives in Earth History and Paleobiology. ISBN 978-0-231-13522-1
- van Andel, Tjeerd, (1985) 1994, New Views on an Old Planet: A History of Global Change, Cambridge University Press