Trichromacy

Source: Wikipedia, the free encyclopedia.

CRT display, which creates most visible colors through combinations and different levels of the three primary colors
: red, green and blue

Trichromacy or trichromatism is the possession of three independent channels for conveying color information, derived from the three different types of cone cells in the eye.[1] Organisms with trichromacy are called trichromats.

The normal explanation of trichromacy is that the organism's

absorption spectra. In actuality, the number of such receptor types may be greater than three, since different types may be active at different light intensities. In vertebrates with three types of cone cells, at low light intensities the rod cells may contribute to color vision
.

Humans and other animals that are trichromats

placental mammals) and another was gained, resulting in trichromacy among some primates.[2] Humans and closely related primates are usually trichromats, as are some of the females of most species of New World monkeys, and both male and female howler monkeys.[3]

Recent research suggests that trichromacy may also be quite general among

behavioural tests may verify if trichromacy is a common characteristic of marsupials.[2]

Most other mammals are currently thought to be

honeybees) are also trichromats, being sensitive to ultraviolet, blue and green instead of blue, green and red.[3]

Research indicates that trichromacy allows animals to distinguish brightly colored fruit and young leaves from other vegetation that is not beneficial to their survival.[8] Another theory is that detecting skin flushing and thereby mood may have influenced the development of primate trichromate vision. The color red also has other effects on primate and human behavior as discussed in the color psychology article.[9]

Types of cones specifically found in primates

Primates are the only known placental mammalian trichromats.[10][failed verification] Their eyes include three different kinds of cones, each containing a different photopigment (opsin). Their peak sensitivities lie in the blue (short-wavelength S cones), green (medium-wavelength M cones) and yellow-green (long-wavelength L cones) regions of the color spectrum.[11] S cones make up 5–10% of the cones and form a regular mosaic. Special bipolar and ganglion cells pass those signals from S cones and there is evidence that they have a separate signal pathway through the thalamus to the visual cortex as well. On the other hand, the L and M cones are hard to distinguish by their shapes or other anatomical means – their opsins differ in only 15 out of 363 amino acids, so no one has yet succeeded in producing specific antibodies to them. But Mollon and Bowmaker[12] did find that L cones and M cones are randomly distributed and are in equal numbers.[13]

Mechanism of trichromatic color vision

Normalised responsivity spectra of human cone cells
Illustration of color metamerism:
In column 1, a ball is illuminated by monochromatic light. Multiplying the spectrum by the cones' spectral sensitivity curves gives the response for each cone type.
In column 2, metamerism is used to simulate the scene with blue, green and red LEDs, giving a similar response.

Trichromatic color vision is the ability of humans and some other animals to see different colors, mediated by interactions among three types of color-sensing cone cells. The trichromatic color theory began in the 18th century, when Thomas Young proposed that color vision was a result of three different photoreceptor cells. From the middle of the 19th century, in his Treatise on Physiological Optics,[14][15] Hermann von Helmholtz later expanded on Young's ideas using color-matching experiments which showed that people with normal vision needed three wavelengths to create the normal range of colors. Physiological evidence for trichromatic theory was later given by Gunnar Svaetichin (1956).[16]

Each of the three types of cones in the

11-cis retinal. Each different pigment is especially sensitive to a certain wavelength of light (that is, the pigment is most likely to produce a cellular response when it is hit by a photon with the specific wavelength to which that pigment is most sensitive). The three types of cones are L, M, and S, which have pigments that respond best to light of long (especially 560 nm), medium (530 nm), and short (420 nm) wavelengths respectively.[17][18]

Since the likelihood of response of a given cone varies not only with the wavelength of the light that hits it but also with its intensity, the brain would not be able to discriminate different colors if it had input from only one type of cone. Thus, interaction between at least two types of cone is necessary to produce the ability to perceive color. With at least two types of cones, the brain can compare the signals from each type and determine both the intensity and color of the light. For example, moderate stimulation of a medium-wavelength cone cell could mean that it is being stimulated by very bright red (long-wavelength) light, or by not very intense yellowish-green light. But very bright red light would produce a stronger response from L cones than from M cones, while not very intense yellowish light would produce a stronger response from M cones than from other cones. Thus trichromatic color vision is accomplished by using combinations of cell responses.

It is estimated that the average human can distinguish up to ten million different colors.[19]

See also

References

  1. ^ "Color Glossary". Archived from the original on 4 October 2015. Retrieved 8 November 2006.
  2. ^
    S2CID 14604695
    .
  3. ^ .
  4. .
  5. PMID 19363921.{{cite journal}}: CS1 maint: DOI inactive as of April 2024 (link
    )
  6. .
  7. .
  8. .
  9. .
  10. ^ Ronald G. Boothe (2002). Perception of the visual environment. Springer. p. 219. .
  11. .
  12. .
  13. ^ Wässle, Heinz (11 February 1999). "Colour vision: A patchwork of cones". Nature. 397 (6719): 473–475.
    S2CID 4431471
    .
  14. ^ von Helmholtz, Hermann (1909). Handbuch der Physiologischen Optik (3 ed.). Hamburg ; Leipzig: Leopold Voss. Retrieved 18 February 2020.
  15. . Retrieved 18 February 2020.
  16. .
  17. .
  18. ^ Jacobs GH, Nathans J (March 2009). "Color Vision: How Our Eyes Reflect Primate Evolution". Scientific American.
  19. ^ Leong, Jennifer. "Number of Colors Distinguishable by the Human Eye". hypertextbook. Retrieved 21 February 2013.

External links

  • The Straight Dope: "Are cats and dogs really color-blind? How do they know?"
  • Svaetichin, Gunnar; MacNichol, Edward F. (November 1958). "Retinal mechanisms for chromatic and achromatic vision". Annals of the New York Academy of Sciences. 74 (2): 385–404.
    S2CID 27130943
    .