Trichuriasis
Trichuriasis | |
---|---|
Other names | Whipworm infection |
Stool microscopy[3] | |
Prevention | Improved sanitation, handwashing, mass treatment[4][5] |
Medication | Albendazole, mebendazole, ivermectin[6] |
Frequency | 464 million (2015)[7] |
Trichuriasis, also known as whipworm infection, is an infection by the parasitic worm Trichuris trichiura (whipworm).[2] If the infection is only with a few worms, there are often no symptoms.[1] In those who are infected with many worms, there may be abdominal pain, fatigue and diarrhea.[1] The diarrhea sometimes contains blood.[1] Infections in children may cause poor intellectual and physical development.[1] Low red blood cell levels may occur due to loss of blood.[2]
The disease usually spreads when people eat food or drink water containing these worms' eggs.
Prevention is by properly cooking food and
Whipworm infection affected about 464 million in 2015.
Signs and symptoms
Light infestations (<100 worms) frequently have no symptoms. Heavier infestations, especially in small children, can present gastrointestinal problems including abdominal pain and distension, bloody or mucus-filled diarrhea, and tenesmus (feeling of incomplete defecation, generally accompanied by involuntary straining). Mechanical damage to the intestinal mucosa, and toxic, or inflammatory damage to the host's intestines may occur. While appendicitis may be brought on by damage and edema of the adjacent tissue, if there are large numbers of worms or larvae present, it has been suggested that the embedding of the worms into the ileocecal region may also make the host susceptible to bacterial infection. A severe infection with high numbers of embedded worms in the rectum leads to edema, which can cause rectal prolapse, although this is typically only seen in small children. The prolapsed, inflamed, and edematous rectal tissue may even show visible worms.[citation needed]
Heavy infestations may have bloody
Cause
Trichuriasis is caused by a parasitic worm also known as a
Reservoir
Humans are the main, but not the only reservoir for T. trichiura. Recent research verified by the application of molecular techniques (PCR) that dogs are a reservoir for T. trichiura, as well as T. vulpis.[17]
Vector
Non-biting cyclorrhaphan flies (Musca domestica, M. sorbens, Chrysomya rufifacies, C. bezziana, Lucina cuprina, Calliphora vicina and Wohlfarthia magnifica) have been found to carry Trichuris trichiura. A study in two localized areas in Ethiopia found cockroaches were carriers for several human intestinal parasites, including T. trichiura.[citation needed]
Transmission
Humans can become infected with the parasite due to ingestion of infective eggs by mouth contact with hands or food contaminated with egg-carrying soil. However, there have also been rare reported cases of transmission of T. trichiura by sexual contact. Some major outbreaks have been traced to contaminated
Life cycle
Unembryonated eggs (unsegmented) are passed in the feces of a previous host to the soil. In the soil, these eggs develop into a 2-cell stage (segmented egg) and then into an advanced cleavage stage. Once at this stage, the eggs embryonate and then become infective, a process that occurs in about 15 to 30 days). Next, the infective eggs are ingested by way of soil-contaminated hands or food and hatch inside the small intestine, releasing larvae into the gastrointestinal tract. These larvae burrow into a villus and develop into adults (over 2–3 days). They then migrate into the cecum and ascending colon where they thread their anterior portion (whip-like end) into the tissue mucosa and reside permanently for their year-long lifespan. About 60 to 70 days after infection, female adults begin to release unfertilized eggs (oviposit) into the cecum at a rate of 3,000 to 20,000 eggs per day, linking the life cycle to the start.[citation needed]
Incubation period
- The exact incubation period of T. trichiura is unknown, however, immature eggs in soil under favorable conditions take about three weeks to mature: 15–30 days, 10 days minimum to mature before ideal ingestion by the human host. Favorable conditions for maturation of eggs are warm to temperate climates with adequate humidity or precipitation, as ova are resistant to cold, but not resistant to drying.[citation needed]
- Once ingested, the larva will remain dug into a villus in the small intestine for about 2–3 days until it is fully developed for migration to the ileocecal section of the gastrointestinal tract.[citation needed]
- The average total life span of T. trichiura is one year, although there have been longer cases reported, lasting as long as five years (Note: inadequate treatment and re-infection are likely to play a role in this).[citation needed]
Morphology

Adult worms are usually 3–5 centimetres (1.2–2.0 in) long, with females being larger than males as is typical of nematodes. The thin, clear majority of the body (the anterior, whip-like end) is the esophagus, and it is the end that the worm threads into the mucosa of the colon. The widened, pinkish-gray region of the body is the posterior, and it is the end that contains the parasite's intestines and reproductive organs. T. trichiura eggs are
Diagnosis
A stool ova and parasites exam reveals the presence of typical whipworm eggs. Typically, the Kato-Katz thick-smear technique is used for identification of the Trichuris trichiura eggs in the stool sample. Trichuria eggs often appear larger and more swollen on Kato-Katz preparation compared to when using other techniques.[18]
Although colonoscopy is not typically used for diagnosis, as the adult worms can be overlooked, especially with an imperfect colon, there have been reported cases in which colonoscopy has revealed adult worms. Colonoscopy can directly diagnose trichuriasis by identification of the threadlike form of worms with an attenuated, whip-like end. Colonoscopy is a useful diagnostic tool, especially in patients infected with only a few male worms and with no eggs presenting in the stool sample.[19]
Trichuriasis can be diagnosed when T. trichiura eggs are detected in stool examination. Eggs will appear barrel-shaped and un
Prevention
Deworming
Limited access to essential medicine has made the eradication of trichuriasis worldwide challenging. Also, it is a public health concern that rates of post-treatment re-infection need to be determined and addressed to diminish the incidence of untreated re-infection. Lastly, with mass drug administration strategies improved diagnosis, and prompt treatment, the detection of an emergence of antihelminthic drug resistance should be examined.[citation needed]
Mass Drug Administration (preventative chemotherapy) has had a positive effect on the disease burden of trichuriasis in East and West Africa, especially among children, who are at highest risk for infection.[citation needed]
Sanitation
Infection can be avoided by proper disposal of human feces, avoiding fecal contamination of food, not
Improved facilities for feces disposal have decreased the incidence of whipworm. Handwashing before food handling, and avoiding ingestion of soil by thorough washing of food that may have been contaminated with egg-containing soil are other preventive measures. In addition to washing, it is also advisable to peel and/or cook fruits and vegetables. Improvement of sanitation systems, as well as improved facilities for feces disposal, have helped to limit defecation onto soil and contain potentially infectious feces from bodily contact.[23]
A study in a
Treatment
Trichuriasis is treated with benzimidazole anthelmintic agents such as albendazole or mebendazole, sometimes in conjunction with other medications.[citation needed]
Mebendazole is 90% effective in the first dose. Higher clearance rates can be obtained by combining mebendazole or albendazole with ivermectin.[24] The safety of ivermectin in children under 15 kg (33 lb) and pregnant women has not yet been established.
In people with diarrhea, loperamide may be added to increase the contact time between anthelmintic agents and the parasites. Oral iron supplementation may be useful in treating the iron-deficiency anemia which often accompanies trichuriasis.[citation needed]
Epidemiology

Regions
Infection of T. trichiura is most frequent in areas with tropical weather and poor sanitation practices. Trichuriasis occurs frequently in areas in which untreated human feces is used as fertilizer or where open defecation takes place. Trichuriasis infection prevalence is 50 to 80 percent in some regions of Asia (noted especially in China and Korea) and also occurs in rural areas of the southeastern United States.[citation needed]
Infection estimates
T. trichiura is the third most common nematode (roundworm) infecting humans. Infection is most prevalent among children, and in North America, infection occurs frequently in immigrants from tropical or sub-tropical regions. It is estimated that 600–800 million people are infected worldwide, with 3.2 billion individuals at risk because they live in regions where this intestinal worm is common.[citation needed]
History
The first written record of T. trichiura was made by the Italian anatomist Giovanni Battista Morgagni, who identified the presence of the parasite in a case of worms residing in the colon in 1740.[citation needed] An exact morphological description and accurate drawings were first recorded in 1761 by Johann Georg Roederer, a German physician.[citation needed] Soon after, the name Trichuris trichiura was given to this species.
Synonyms
Human whipworm, trichocephaliasis, and tricuriasis are all synonyms for trichuriasis, human infection of the T. trichiura intestinal nematode. In Spanish, trichuriasis is called tricuriasis, while it is known as trichuriose in French and Peitschenwurmbefall in German.[citation needed]
Research
Development of subunit vaccines requires the identification of protective
References
- ^ a b c d e f g h i j "Soil-transmitted helminth infections Fact sheet N°366". World Health Organization. June 2013. Archived from the original on 21 February 2014. Retrieved 5 March 2014.
- ^ a b c d e f "Parasites - Trichuriasis (also known as Whipworm Infection)". CDC. January 10, 2013. Archived from the original on 1 March 2014. Retrieved 5 March 2014.
- ^ a b "Parasites - Trichuriasis (also known as Whipworm Infection) Diagnosis". CDC. January 10, 2013. Archived from the original on 20 March 2014. Retrieved 20 March 2014.
- ^ S2CID 8425278.
- ^ a b c "Parasites - Trichuriasis (also known as Whipworm Infection) Prevention & Control". CDC. January 10, 2013. Archived from the original on 20 March 2014. Retrieved 20 March 2014.
- ^ a b "Parasites - Trichuriasis (also known as Whipworm Infection): Resources for Health Professionals". CDC. January 10, 2013. Archived from the original on 20 October 2014. Retrieved 5 March 2014.
- ^ PMID 27733282.
- ISBN 978-0-7817-9701-6. Archivedfrom the original on 2017-09-08.
- ^ a b "Neglected Tropical Diseases". cdc.gov. June 6, 2011. Archived from the original on 4 December 2014. Retrieved 28 November 2014.
- PMID 22291577.
- PMID 22590656.
- ISBN 978-0-8213-6180-1. Archivedfrom the original on 2016-10-10.
- PMID 34842643.
- PMID 15138075.
- S2CID 205391965.
- ^ "Trichuris trichiura definition - Medical Dictionary definitions of popular medical terms easily defined on MedTerms". Medterms.com. 2000-04-15. Archived from the original on 2011-06-06. Retrieved 2009-05-19.
- .
- ISBN 978-92-4-151534-4. Archived from the originalon October 18, 2019.
- PMID 19724702.
- ^ "Trichuris trichiura". WrongDiagnosis.com. 2009-05-06. Archived from the original on 2004-06-19. Retrieved 2009-05-19.
- PMID 29939620.
- ISSN 1876-0341.
- ^ "Prevention & Control". Parasites - Trichuriasis (also known as Whipworm Infection). Centers for Disease Control and Prevention. 25 April 2019. Retrieved 27 October 2022.
- PMID 21062129.