Trinity (nuclear test)
Trinity | |
---|---|
implosion fission | |
Yield | 25 kt (100 TJ) |
Test chronology | |
→ |
Trinity Site | |
Nearest city | Bingham, New Mexico |
---|---|
Coordinates | 33°40′38″N 106°28′31″W / 33.67722°N 106.47528°W |
Area | 36,480 acres (14,760 ha) |
Built | 1945 |
NRHP reference No. | 66000493[1] |
NMSRCP No. | 30 |
Significant dates | |
Date of Nuclear Explosion | July 16, 1945 |
Added to NRHP | October 15, 1966 |
Designated NHLD | December 21, 1965[2] |
Designated NMSRCP | December 20, 1968 |
Trinity was the
The test, both planned and directed by
Some 425 people were present on the weekend of the Trinity test. In addition to Bainbridge and Oppenheimer, observers included
The test site was declared a National Historic Landmark district in 1965 and listed on the National Register of Historic Places the following year.
Background
The creation of
These efforts were transferred to the authority of the
Manhattan Project scientists had identified two
Plutonium is a
Project scientists then turned to a more technically difficult
Preparation
Decision
The idea of testing the implosion device was brought up in discussions at Los Alamos in January 1944 and attracted enough support for Oppenheimer to approach Groves. Groves gave approval, but he had concerns. The Manhattan Project had spent a great deal of money and effort to produce the plutonium, and he wanted to know whether there would be a way to recover it. The Laboratory's Governing Board then directed
The means of generating such a controlled reaction were uncertain, and the data obtained would not be as useful as that from a full-scale explosion.[16] Oppenheimer argued that the bomb "must be tested in a range where the energy release is comparable with that contemplated for final use."[17] In March 1944, he obtained Groves's tentative approval for testing a full-scale explosion inside a containment vessel, although Groves was still worried about how he would explain the loss of "a billion dollars worth" of plutonium in the event the test failed.[16]
Code name
The origin of the code name "Trinity" for the test is unknown, but it is often attributed to Oppenheimer as a reference to the poetry of John Donne, which in turn references the Christian belief of the Trinity. In 1962, Groves wrote to Oppenheimer about the origin of the name, asking if he had chosen it because it was a name common to rivers and peaks in the West and would not attract attention, and elicited this reply:
I did suggest it, but not on that ground ... Why I chose the name is not clear, but I know what thoughts were in my mind. There is a poem of John Donne, written just before his death, which I know and love. From it a quotation: "As West and East / In all flatt Maps – and I am one – are one, / So death doth touch the Resurrection."
Organization
In March 1944, planning for the test was assigned to
- TR-1 (Services) under John H. Williams
- TR-2 (Shock and Blast) under John H. Manley
- TR-3 (Measurements) under Robert R. Wilson
- TR-4 (Meteorology) under J. M. Hubbard
- TR-5 (Spectrographic and Photographic) under Julian E. Mack
- TR-6 (Airborne Measurements) under Bernard Waldman
- TR-7 (Medical) under Louis H. Hempelmann
The E-9 group was renamed the X-2 (Development, Engineering and Tests) Group in the August 1944 reorganization.[21]
Test site
Safety and security required a remote, isolated and unpopulated area. The scientists also wanted a flat area to minimize secondary effects of the blast, and with little wind to spread
The sites were surveyed by car and by air by Bainbridge, R. W. Henderson, Major W. A. Stevens and Major
The only structures in the vicinity were the
Lieutenant Bush's twelve-man MP unit arrived at the site from Los Alamos on December 30, 1944. This unit established initial security checkpoints and horse patrols. The distances around the site proved too great for the horses, so they were repurposed for polo playing, and the MPs resorted to using jeeps and trucks for transportation.[25][33] Maintenance of morale among men working long hours under harsh conditions along with dangerous reptiles and insects was a challenge. Bush strove to improve the food and accommodation and to provide organized games and nightly movies.[34]
Throughout 1945, other personnel arrived at the Trinity Site to help prepare for the bomb test. They tried to use water out of the ranch wells, but found the water so
Due to its proximity to the bombing range, the base camp was accidentally bombed twice in May. When the lead plane on a practice night raid accidentally knocked out the generator or otherwise doused the lights illuminating their target, they went in search of the lights, and since they had not been informed of the presence of the Trinity base camp, and it was lit, they bombed it instead. The accidental bombing damaged the stables and the carpentry shop, and a small fire resulted.[38]
Jumbo
Responsibility for the design of a containment vessel for an unsuccessful explosion, known as "Jumbo", was assigned to Robert W. Henderson and Roy W. Carlson of the Los Alamos Laboratory's X-2A Section. The bomb would be placed into the heart of Jumbo, and if the bomb's detonation was unsuccessful the walls of Jumbo would not be breached, making it possible to recover the bomb's plutonium. Hans Bethe, Victor Weisskopf, and Joseph O. Hirschfelder made the initial calculations, followed by a more detailed analysis by Henderson and Carlson.[23] They drew up specifications for a steel sphere 13 to 15 feet (3.96 to 4.57 m) in diameter, weighing 150 short tons (140 t) and capable of handling a pressure of 50,000 pounds per square inch (340,000 kPa). After consulting with the steel companies and the railroads, Carlson produced a scaled-back cylindrical design that would be much easier to manufacture. Carlson identified a company that normally made boilers for the Navy, Babcock & Wilcox; they had made something similar and were willing to attempt its manufacture.[39]
As delivered in May 1945,
For many of the Los Alamos scientists, Jumbo was "the physical manifestation of the lowest point in the Laboratory's hopes for the success of an implosion bomb."[40] By the time it arrived, the reactors at the Hanford Engineer Works produced plutonium in quantity, and Oppenheimer was confident that there would be enough for a second test.[39] The use of Jumbo would interfere with the gathering of data on the explosion, the primary objective of the test.[43] An explosion of more than 500 tons of TNT (2,100 GJ) would vaporize the steel and make it difficult to measure the thermal effects. Even 100 tons of TNT (420 GJ) would send fragments flying, presenting a hazard to personnel and measuring equipment.[44] It was therefore decided not to use it.[43] Instead, it was hoisted up a steel tower 800 yards (732 m) from the explosion, where it could be used for a subsequent test.[39] In the end, Jumbo survived the explosion, although its tower did not.[41]
Jumbo was destroyed on April 16, 1946, when an Army ordnance team detonated eight 500 lb bombs in the bottom of the steel container. Jumbo, with its steel banding around the middle, had been designed to contain the 5,000 lbs of high explosive in the atomic bomb while it was suspended in the center of the vessel. With the conventional bombs placed in the bottom of Jumbo, the resulting blast sent fragments flying in all directions as far as three quarters of a mile.[45] Who authorized the destruction of Jumbo remains controversial.[46] The rusting skeleton of Jumbo sits in the parking lot at the Trinity site on the White Sands Missile Range, where it was moved in 1979.[47]
The development team also considered other methods of recovering active material in the event of a dud explosion. One idea was to cover it with a cone of sand. Another was to suspend the bomb in a tank of water. As with Jumbo, it was decided not to proceed with these means of containment. The CM-10 (Chemistry and Metallurgy) group at Los Alamos also studied how the active material could be chemically recovered after a contained or failed explosion.[44]
100-ton test
Because there would be only one chance to carry out the test correctly, Bainbridge decided that a rehearsal should be carried out to allow the plans and procedures to be verified, and the instrumentation to be tested and calibrated. Oppenheimer was initially skeptical but gave permission, and he later agreed that it contributed to the success of the Trinity test.[37]
A 20-foot-high (6 m) wooden platform was constructed 800 yards (730 m) to the southeast of Trinity
The test was scheduled for May 5 but was postponed for two days to allow for more equipment to be installed. Requests for further postponements had to be refused because they would have affected the schedule for the main test. The detonation time was set for 04:00 Mountain War Time (MWT), on May 7, but there was a 37-minute delay to allow the observation plane,[53] a Boeing B-29 Superfortress from the 216th Army Air Forces Base Unit flown by Major Clyde "Stan" Shields,[54] to get into position.[53]
The fireball of the conventional explosion was visible from
In addition to uncovering scientific and technological issues, the rehearsal test revealed practical concerns as well. Over 100 vehicles were used for the rehearsal test, but it was realized more would be required for the main test, and they would need better roads and repair facilities. More radios and more telephone lines were required. Lines needed to be buried to prevent damage by vehicles. A teletype was installed to allow better communication with Los Alamos. A town hall was built to allow for large conferences and briefings, and the mess hall had to be upgraded. Because dust thrown up by vehicles interfered with some of the instrumentation, 20 miles (32 km) of road was sealed.[55][37]
The bomb
The term "gadget"—a laboratory euphemism for a bomb[56]—gave the laboratory's weapon physics division, "G Division", its name in August 1944.[57] At that time it did not refer specifically to the Trinity Test device as that had yet to be developed,[58] but once it was, it became the laboratory code name.[57] The Trinity bomb was officially a Y-1561 device, as was the Fat Man used later in the bombing of Nagasaki. The two were very similar, though the Trinity bomb lacked fuzing and external ballistic casing. The bombs were still under development, and small changes continued to be made to the Fat Man design.[59]
To keep the design as simple as possible, a nearly solid spherical core was chosen rather than a hollow one, although calculations showed that a hollow core would be more efficient in its use of plutonium.
Of the several allotropes of plutonium, the metallurgists preferred the malleable δ (delta) phase. This was stabilized at room temperature by alloying it with gallium. Two equal hemispheres of plutonium-gallium alloy were plated with silver,[59][65] and designated by serial numbers HS-1 and HS-2.[66] The 6.19-kilogram (13.6 lb) radioactive core generated 15 W of heat, which warmed it up to about 100 to 110 °F (38 to 43 °C),[59] and the silver plating developed blisters that had to be filed down and covered with gold foil; later cores were plated with nickel instead.[67]
A trial assembly of the bomb, without active components or explosive lenses, was carried out by the bomb assembly team headed by Norris Bradbury at Los Alamos on July 3. It was driven to Trinity and back. A set of explosive lenses arrived on July 7, followed by a second set on July 10. Each was examined by Bradbury and Kistiakowsky, and the best ones were selected for use.[68] The remainder were handed over to Edward Creutz, who conducted a test detonation at Pajarito Canyon near Los Alamos without nuclear material.[69] Magnetic measurements from this test suggested that the implosion might be insufficiently simultaneous and the bomb would fail. Bethe worked through the night to assess the results and reported that they were consistent with a perfect explosion.[70]
Assembly of the nuclear capsule began on July 13 at the McDonald Ranch House, where the master bedroom had been turned into a
To better understand the likely effect of a bomb dropped from a plane and detonated in air, and generate less nuclear fallout, the bomb was to be detonated atop a 100-foot (30 m) steel tower.[72] The bomb was driven to the base of the tower, where a temporary eye bolt was screwed into the 105-pound (48 kg) capsule and a chain hoist was used to lower the capsule into the bomb. As the capsule entered the hole in the uranium tamper, it stuck. Robert Bacher realized that the heat from the plutonium core had caused the capsule to expand, while the explosives assembly with the tamper had cooled during the night in the desert. By leaving the capsule in contact with the tamper, the temperatures equalized and, in a few minutes, the capsule had slipped completely into the tamper.[73] The eye bolt was then removed from the capsule and replaced with a threaded uranium plug, a boron disk was placed on top of the capsule (to complete the thin spherical shell of plastic boron around the tamper), an aluminum plug was screwed into the hole in the pusher (aluminum shell surrounding the tamper), and the two remaining high explosive lenses were installed. Finally, the upper Dural polar cap was bolted into place.[74] The assembly of active material and high explosives was finished at 17:45 hours on 13 July.[75]
The gadget was hoisted to the top of the tower. The tower stood on four legs extending 20 feet (6.1 m) into the ground, with concrete footings. Atop it was an oak platform and a
Personnel
In the final two weeks before the test, some 250 personnel from Los Alamos were at work at the Trinity Site,[80] and Lieutenant Bush's command had ballooned to 125 men guarding and maintaining the base camp. Another 160 men under Major T.O. Palmer were stationed outside the area with vehicles to evacuate the civilian population in the surrounding region should that prove necessary.[81][35] They had enough vehicles to move 450 people to safety and had food and supplies to last them for two days. Arrangements were made for Alamogordo Army Air Field to provide accommodation.[82] Groves warned Governor of New Mexico John J. Dempsey that martial law might have to be declared in the southwestern part of the state.[83][35]
Shelters were established 10,000 yards (9,100 m) due north, west, and south of the tower, each with its own chief: Robert Wilson at N-10,000, John Manley at W-10,000 and
Enrico Fermi offered to take wagers among the top physicists and military present on whether the atmosphere would ignite, and if so whether it would destroy just the state or incinerate the entire planet.[93][94] This last result had been previously calculated by Bethe to be almost impossible,[95][96][e] although for a while it had caused some of the scientists some anxiety. Bainbridge was furious with Fermi for frightening the guards, some of whom asked to be relieved;[98] his own biggest fear was that nothing at all would happen, in which case he would have to return to the tower to investigate.[99]
Mary Argo was the only female staff member to be officially invited to watch the test, which she did. Joan Hinton snuck in to watch the test despite not being invited.[100]
Explosion
Detonation
The scientists wanted good visibility, low humidity, light winds at low altitude, and westerly winds at high altitude for the test. The best weather was predicted between July 18 and 21, but the Potsdam Conference was due to start on July 16 and President Harry S. Truman wanted the test to be conducted before the conference began. It was therefore scheduled for July 16, the earliest date at which the bomb components would be available.[101]
The detonation was initially planned for 04:00 MWT but was postponed because of rain and lightning from early that morning. It was feared that the danger from radiation and fallout would be increased by rain, and lightning had the scientists concerned about a premature detonation,[102] as had happened with a model of the electrical system.[35] A crucial favorable weather report came in at 04:45,[68] and the final twenty-minute countdown began at 05:10, read by Samuel Allison.[103] A rocket launched at 5:25 to signal five minutes before detonation; another rocket fired at 5:29. At 5:29:15, a switch in the control bunker started the detonation timer.[35] By 05:30 the rain had gone.[68] There were some communication problems: the shortwave radio frequency for communicating with the B-29s was shared with the Voice of America, and the FM radios shared a frequency with a railroad freight yard in San Antonio, Texas.[99]
Two circling B-29s observed the test, with Shields again flying the lead plane. They carried members of
At 05:29:21 MWT
Many observers recalled their amazement at the light from the explosion. Conant wrote, "The enormity of the light and its length quite stunned me". Lawrence, 27 miles (43 km) away, wrote of being "enveloped with a warm brilliant yellow white light—from darkness to brilliant sunshine in an instant".
Joan Hinton snuck in to watch the test despite not being invited,[111] and wrote of it:
It was like being at the bottom of an ocean of light. We were bathed in it from all directions. The light withdrew into the bomb as if the bomb sucked it up. Then it turned purple and blue and went up and up and up. We were still talking in whispers when the cloud reached the level where it was struck by the rising sunlight so it cleared out the natural clouds. We saw a cloud that was dark and red at the bottom and daylight on the top. Then suddenly the sound reached us. It was very sharp and rumbled and all the mountains were rumbling with it. We suddenly started talking out loud and felt exposed to the whole world.[112]
In his official report on the test, Thomas Farrell (who initially exclaimed, "The long-hairs have let it get away from them!"[113]) wrote:
The lighting effects beggared description. The whole country was lighted by a searing light with the intensity many times that of the midday sun. It was golden, purple, violet, gray, and blue. It lighted every peak, crevasse and ridge of the nearby mountain range with a clarity and beauty that cannot be described but must be seen to be imagined ...[114]
William L. Laurence of The New York Times had been transferred temporarily to the Manhattan Project at Groves's request in early 1945.[115] Groves had arranged for Laurence to view significant events, including Trinity and the atomic bombing of Japan. Laurence wrote press releases with the help of the Manhattan Project's public relations staff.[116] He later recalled:
A loud cry filled the air. The little groups that hitherto had stood rooted to the earth like desert plants broke into dance, the rhythm of primitive man dancing at one of his fire festivals at the coming of Spring.[117]
After the initial euphoria of witnessing the explosion had passed, Bainbridge told Oppenheimer, "Now we are all sons of bitches."[37] Rabi noticed Oppenheimer's reaction: "I'll never forget his walk"; Rabi recalled, "I'll never forget the way he stepped out of the car ... his walk was like High Noon ... this kind of strut. He had done it."[118]
Oppenheimer later recalled that, while witnessing the explosion, he thought of a verse from a
दिवि सूर्यसहस्रस्य भवेद्युगपदुत्थिता। |
If the radiance of a thousand suns were to burst at once into the sky, |
Years later he would explain that another verse had also entered his head at that time:
We knew the world would not be the same. A few people laughed, a few people cried. Most people were silent. I remembered the line from the Hindu scripture, the Bhagavad Gita; Vishnu is trying to persuade the Prince that he should do his duty and, to impress him, takes on his multi-armed form and says, 'Now I am become Death, the destroyer of worlds.' I suppose we all thought that, one way or another.[120][f]
John R. Lugo was flying a U.S. Navy transport at 10,000 feet (3,000 m), 30 miles (48 km) east of
-
Ground zero after the test
-
The Trinity explosion, 25 ms after detonation. The viewed fireball hemisphere's highest point in this image is about 200 metres (660 ft) high.
-
An aerial photograph of the Trinity crater shortly after the test.[g]
Instrumentation and measurements
The T (Theoretical) Division at Los Alamos had predicted a yield of between 5 and 10 kilotons of TNT (21 and 42 TJ). Immediately after the blast, two lead-lined M4 Sherman tanks made their way to the crater. Radiochemical analysis of soil samples that they collected indicated that the total yield (or energy release) had been around 18.6 kilotons of TNT (78 TJ).[126] This method turned out to be the most accurate means of determining the efficiency of a nuclear explosion and was used for many years after.[127]
The energy of the blast wave was measured by a large number of sensors using a variety of physical principles. The piezoelectric blast gauges were thrown off scale and no records were obtained. The excess-velocity blast-yield measurement (precise measurement of the velocity of sound at the site of the explosion and then comparing it with the velocity of the blast wave)[128] provided among the most accurate measurements of the blast pressure. Another method was to use the aluminum diaphragm box gauges designed to record the peak pressure of the blast wave. These indicated a blast energy of 9.9 kilotons of TNT (41 TJ) ± 1.0 kiloton of TNT (4.2 TJ). They were supplemented by a large number of other types of mechanical pressure gauges. And only one of them gave a reasonable result of about 10 kilotons of TNT (42 TJ).[129]
Fermi prepared his own experiment to measure the energy that was released as blast. He later recalled:
About 40 seconds after the explosion the air blast reached me. I tried to estimate its strength by dropping from about six feet small pieces of paper before, during, and after the passage of the blast wave. Since, at the time, there was no wind I could observe very distinctly and actually measure the displacement of the pieces of paper that were in the process of falling while the blast was passing. The shift was about 2 1/2 meters, which, at the time, I estimated to correspond to the blast that would be produced by ten thousand tons of T.N.T.[130]
Contemporary fundamental physics, data from the Trinity test, and others, resulted in the following total blast and thermal energy fractionation being observed for fission detonations near sea level[131][132][133] | |
Blast | 50% |
Thermal energy | 35% |
Initial ionizing radiation | 5% |
Residual fallout radiation |
10% |
There were also several gamma ray and
Some fifty different cameras had been set up, taking motion and still photographs. Special
The official estimate for the total yield of the Trinity bomb, which includes the energy of the blast component together with the contributions from the explosion's light output and both forms of ionizing radiation, is 21 kilotons of TNT (88 TJ),[137] of which about 15 kilotons of TNT (63 TJ) was contributed by fission of the plutonium core, and about 6 kilotons of TNT (25 TJ) was from fission of the natural uranium tamper.[138] A re-analysis of data published in 2021 put the yield at 24.8 ± 2 kilotons of TNT (103.8 ± 8.4 TJ).[106]
As a result of the data gathered on the size of the blast, the detonation height for the bombing of Hiroshima was set at 1,885 feet (575 m) to take advantage of the
Civilian detection
The light from the test was visible as far as Amarillo, Texas, 280 miles (450 km) and a mountain range away from Trinity.[35] The Second Air Force issued a press release with a cover story that Groves had prepared weeks before, which described the explosion as the accidental destruction of a magazine on the base. The press release, written by Laurence, stated:
Alamogordo, N.M., July 16 The commanding officer of the Alamogordo Army Air Base made the following statement today: "Several inquiries have been received concerning a heavy explosion which occurred on the Alamogordo Air base reservation this morning. A remotely located ammunition magazine containing a considerable amount of high explosives and pyrotechnics exploded. There was no loss of life or injury to anyone, and the property damage outside of the explosives magazine was negligible. Weather conditions affecting the content of gas shells exploded by the blast may make it desirable for the Army to evacuate temporarily a few civilians from their homes."[142][143]
Laurence had prepared four releases, covering outcomes ranging from a cover story for a successful test (the one which was used) to catastrophic scenarios involving serious damage to surrounding communities, evacuation of nearby residents, and a placeholder for the names of those killed.[144][145][146] As Laurence was a witness to the test, he knew that the last release, if used, might be his own obituary.[144] A newspaper article published the same day stated that "the blast was seen and felt throughout an area extending from El Paso to Silver City, Gallup, Socorro, and Albuquerque."[147] The articles appeared in New Mexico, but East Coast newspapers ignored them,[144] and local residents who saw the light accepted the cover story.[35]
Information about the Trinity test was made public shortly after the bombing of Hiroshima. The Smyth Report, released on August 12, 1945, gave some information on the blast, and the edition released by Princeton University Press a few weeks later incorporated the War Department's press release on the test as Appendix 6, and contained the famous pictures of a "bulbous" Trinity fireball.[148]
Official notifications
The results of the test were conveyed to
Operated on this morning. Diagnosis not yet complete but results seem satisfactory and already exceed expectations. Local press release necessary as interest extends great distance. Dr. Groves pleased. He returns tomorrow. I will keep you posted.[149]
The message arrived at the "Little White House" in the Potsdam suburb of Babelsberg and was at once taken to Truman and Secretary of State James F. Byrnes.[150] Harrison sent a follow-up message which arrived on the morning of July 18:[150]
Doctor has just returned most enthusiastic and confident that the little boy is as husky as his big brother. The light in his eyes discernible from here to Highhold and I could have heard his screams from here to my farm.[149]
Because Stimson's summer home at Highhold was on Long Island and Harrison's farm near Upperville, Virginia, this indicated that the explosion could be seen 250 miles (400 km) away and heard 50 miles (80 km) away.[151]
Three days later, on July 21, a 13-page report written by Groves arrived at Potsdam via a courier. It stated:
At 0530, 16 July 1945, in a remote section of the Alamogordo Air Base, New Mexico, the first full scale test was made of the implosion type atomic fission bomb. For the first time in history there was a nuclear explosion. And what an explosion! ... The test was successful beyond the most optimistic expectations of anyone.[152]
It continued on to estimate the yield of the test (15-20 kilotons) and describe the effects vividly. Stimson took the report to Truman, who was "tremendously pepped up by it." Winston Churchill, who observed Truman's newly confident approach with the Soviets the same day, concluded that he had become "a changed man" as a result of the news.
Fallout
The heaviest fallout contamination outside the restricted test area was 30 miles (48 km) from the detonation point, on Chupadera Mesa. The fallout there was reported to have settled in a white mist onto some of the livestock in the area, resulting in local
Dose reconstruction published in 2020 under the auspices of the National Cancer Institute[161] documented that five counties in New Mexico experienced the greatest radioactive contamination: Guadalupe, Lincoln, San Miguel, Socorro, and Torrance.[162] People living in the surrounding area near the site were unaware of the project and later not included in the 1990 Radiation Exposure Compensation Act support for affected "downwinders" which addressed serious community health problems resulting from similar tests conducted at the Nevada Test Site.[28] Efforts in Congress to add the New Mexico residents to the population covered by the bill continued in 2024.[163]
In August 1945, shortly after the bombing of Hiroshima, the
This incident, along with the next continental US tests in 1951, set a precedent. In subsequent atmospheric nuclear tests at the Nevada Test Site, United States Atomic Energy Commission officials gave the photographic industry maps and forecasts of potential contamination, as well as expected fallout distributions, which enabled them to purchase uncontaminated materials and take other protective measures.[164]
Site today
In September 1953, about 650 people attended the first Trinity Site open house. Visitors to a Trinity Site open house are allowed to see the ground zero and McDonald Ranch House areas.[166] More than seventy years after the test, residual radiation at the site was about ten times higher than normal background radiation in the area. The amount of radioactive exposure received during a one-hour visit to the site is about half of the total radiation exposure which a U.S. adult receives on an average day from natural and medical sources.[167]
On December 21, 1965, the 51,500-acre (20,800 ha) Trinity Site was declared a National Historic Landmark district,[168][2] and on October 15, 1966, it was listed on the National Register of Historic Places.[1] The landmark includes the base camp where the scientists and support group lived, ground zero where the bomb was placed for the explosion, and the McDonald ranch house, where the plutonium core to the bomb was assembled. One of the old instrumentation bunkers is visible beside the road just west of ground zero.[169] An inner oblong fence was added in 1967, and the corridor barbed wire fence that connects the outer fence to the inner one was completed in 1972.[170]
The Trinity monument, a rough-sided, lava-rock obelisk about 12 feet (3.7 m) high, marks the explosion's hypocenter.[166] It was erected in 1965 by Army personnel using local rocks taken from the western boundary of the range.[171] A special tour of the site on July 16, 1995 (marking the 50th anniversary of the Trinity test) attracted 5,000 visitors.[172] Since then, the site has been open to the public on the first Saturdays of April and October.[173][174]
Gallery
-
Visitors to the Trinity site in 1995 for the 50th anniversary
-
Trinity Site Historical Marker, 2008
-
Remnants of Jumbo, 2010
-
Closeup of plaque on obelisk, 2018
-
Trinitite display table, 2018
-
Sign warning against removal of trinitite, 2018
-
People gather around Ground Zero monument, 2018
-
Post World War II Fat Man casing
In popular culture
The Trinity test has been portrayed in various forms of media, including documentary films and dramatizations. In 1946, an 18-minute documentary titled Atomic Power was produced by Time Inc. under The March of Time banner and released theatrically. It featured many people involved with the project, including J. Robert Oppenheimer and Ernest Lawrence, as actors in re-creations of real discussions and events that led up to the Trinity test.[175]: 291–296 In 1947, a docudrama titled The Beginning or the End chronicled the development of nuclear weapons and portrayed the Trinity test.[176][177]
In 1980, a television drama miniseries titled Oppenheimer, a co-production between the British Broadcasting Corporation and the American television station WGBH-TV, aired for seven episodes on BBC Two. The Trinity test is depicted in its fifth episode.[178] In early 1981, a documentary titled The Day After Trinity was released, focusing closely on the events of the Trinity test.[179] In 1989, a feature film titled Fat Man and Little Boy depicted the Trinity test.[180] Two documentaries, Trinity and Beyond and The Bomb, were released in 1995 and 2015 respectively.[181][182]
The 2023 Christopher Nolan-directed blockbuster Oppenheimer prominently portrayed the Trinity test. Nolan cited the film's depiction of the test firing as one of its most important scenes, calling it "the fulcrum that the whole story turns on." Nolan avoided using computer-generated imagery for the re-enactment of the explosion, instead using practical effects, with a smaller explosion made of gasoline, propane, aluminum powder, and magnesium being conducted and then spliced via forced perspective to recreate the size of the Trinity explosion.[183] The popularity of the film brought newfound attention to previous media depictions of the Trinity test, such as The Day After Trinity.[179]
Notes
- ^ Mountain War Time (MWT) was six hours behind Greenwich Mean Time (GMT), the predecessor of Coordinated Universal Time (UTC).
- ^ From the poem "Hymn to God, My God, in My Sickness"
- ^ Holy Sonnets, Holy Sonnet 14
- ^ The mattresses would not have protected the gadget, but they helped the men to feel better.[77]
- ^ The reaction Teller was most concerned with was: 14
7N
+ 14
7N
→ 24
12Mg
+ 4
2He
(alpha particle) + 17.7 MeV.[97] - ^ Oppenheimer spoke these words in the television documentary The Decision to Drop the Bomb (1965).[120] Oppenheimer read the original text in Sanskrit, "kālo'smi lokakṣayakṛtpravṛddho lokānsamāhartumiha pravṛttaḥ" (XI,32),[121] which he translated as "I am become Death, the destroyer of worlds". In the literature, the quote usually appears in the form shatterer of worlds, because this was the form in which it first appeared in print, in Time magazine on November 8, 1948.[122] It later appeared in Robert Jungk's Brighter than a Thousand Suns: A Personal History of the Atomic Scientists (1958),[123] which was based on an interview with Oppenheimer. See Hijiya, The Gita of Robert Oppenheimer[124]
- ^ The small crater in the southeast corner was from the earlier test explosion of 108 tons of TNT (450 GJ).
Citations
- ^ a b "National Register Information System". National Register of Historic Places. National Park Service. July 9, 2010.
- ^ a b "National Historic Landmarks Survey, New Mexico" (PDF). National Park Service. Archived (PDF) from the original on November 18, 2016. Retrieved December 23, 2016.
- ^ Szasz 1992, pp. 3–8.
- ^ Jones 1985, pp. 30–31.
- ^ Jones 1985, p. 76.
- ^ Jones 1985, p. 63.
- ^ Jones 1985, pp. 8–10, 28–29.
- ^ Jones 1985, pp. 522–523, 535–537.
- ^ Jones 1985, pp. 508–509.
- ^ Baker, Hecker & Harbur 1983, p. 142.
- ^ Hawkins, Truslow & Smith 1961, p. 101.
- ^ a b Hoddeson et al. 1993, pp. 235–239.
- ^ Hoddeson et al. 1993, pp. 240–242.
- ^ Hoddeson et al. 1993, pp. 130–138.
- ^ Hoddeson et al. 1993, pp. 245–247.
- ^ a b c Hoddeson et al. 1993, pp. 174–175.
- ^ Norris 2002, p. 395.
- ^ Donne 1896, pp. 211–212.
- ^ Donne 1896, p. 165.
- ^ Rhodes 1986, pp. 571–572.
- ^ a b c Hawkins, Truslow & Smith 1961, p. 266.
- ^ a b Jones 1985, p. 478.
- ^ a b Bainbridge 1976, p. 4.
- ^ Hawkins, Truslow & Smith 1961, pp. 269–270.
- ^ a b c Bainbridge 1976, p. 3.
- ^ "Trinity Site". White Sands Missile Range. Archived from the original on August 6, 2007. Retrieved July 16, 2007.
GPS Coordinates for obelisk (exact GZ) = N33.40.636 W106.28.525
- ^ "White Sands Missile Range Fact Sheet" (PDF). NASA. Archived (PDF) from the original on February 24, 2017. Retrieved July 29, 2023.
- ^ a b "U.S. lawmakers move urgently to recognize survivors of the first atomic bomb test". National Geographic. September 21, 2021. Archived from the original on July 21, 2023. Retrieved August 2, 2023.
- ^ a b Hoddeson et al. 1993, p. 311.
- ^ "Trinity Site History: A copy of the brochure given to site visitors". White Sands Missile Range, United States Army. Archived from the original on August 31, 2014. Retrieved September 11, 2014.
- ^ "McDonald, David G". New Mexico Farm & Ranch Heritage Museum. Archived from the original on September 11, 2014. Retrieved September 11, 2014.
- ^ Bainbridge 1975, p. 40.
- ^ a b "Building a test site". atomicarchive.com. Archived from the original on July 2, 2014. Retrieved August 23, 2014.
- ^ Jones 1985, p. 481.
- ^ ISSN 0028-792X. Retrieved November 22, 2024.
- ^ Jones 1985, p. 480.
- ^ a b c d Bainbridge 1975, p. 41.
- ^ Bainbridge 1975, p. 42.
- ^ a b c Hoddeson et al. 1993, pp. 366–367.
- ^ a b Bainbridge 1975, p. 43.
- ^ a b "Jumbo". atomicarchive.com. Archived from the original on October 10, 2014. Retrieved August 23, 2014.
- ^ a b "Moving "Jumbo" at the Trinity Test Site". Brookings Institution Press. Archived from the original on May 30, 2013. Retrieved February 7, 2013.
- ^ a b c Jones 1985, p. 512.
- ^ a b Bainbridge 1976, p. 5.
- ^ Fraikor 2021, p. 100.
- ^ Fraikor 2021, pp. 102–106.
- ^ "Trinity History". White Sands Missile Range. Archived from the original on March 16, 2022. Retrieved September 26, 2021.
- ^ Walker, Raymond L. (1950). 100-ton Test: Piezo Gauge Measurements. U.S. Atomic Energy Commission, Technical Information Division. p. 1.
- ISBN 978-1-4766-3381-7.
- ^ Bainbridge 1975, pp. 41, 58.
- ^ a b Hoddeson et al. 1993, pp. 360–362.
- ^ Bainbridge 1976, p. 11.
- ^ a b c Bainbridge 1976, p. 9.
- ^ a b Dvorak 2013, pp. 9–10.
- ^ a b Bainbridge 1976, p. 12.
- ^ "Robert F. Christy". Atomic Heritage Foundation. Archived from the original on October 13, 2014. Retrieved November 8, 2014.
- ^ a b Hoddeson et al. 1993, pp. 307–308.
- ^ Hawkins, Truslow & Smith 1961, p. 228.
- ^ a b c Coster-Mullen 2012, pp. 47–53.
- ^ Christy, Robert. "Constructing the Nagasaki Atomic Bomb". Web of Stories. Archived from the originalon October 10, 2014. Retrieved October 12, 2014.
- ^ Hoddeson et al. 1993, p. 293.
- ^ Hoddeson et al. 1993, pp. 270–271, 293–294.
- ^ Wellerstein, Alex. "Christy's Gadget: Reflections on a death". Restricted Data: The Nuclear Secrecy Blog. Archived from the original on October 11, 2014. Retrieved October 7, 2014.
- ^ "Hans Bethe 94 – Help from the British, and the 'Christy Gadget'". Web of Stories. Archived from the original on April 4, 2020. Retrieved October 12, 2014.
- ^ Hawkins, Truslow & Smith 1961, pp. 256–257.
- ^ Wellerstein, Alex. "The third core's revenge". Restricted Data: The Nuclear Secrecy Blog. Archived from the original on April 7, 2014. Retrieved April 4, 2014.
- ^ Smith, Cyril S.; Sanger, S.L. (1986). "Cyril S. Smith's Interview". The Voices of the Manhattan Project and National Museum of Nuclear Science and History. Archived from the original on March 29, 2020. Retrieved March 29, 2020.
- ^ a b c Hoddeson et al. 1993, p. 365.
- ^ Rhodes 1986, p. 657.
- ^ Rhodes 1986, pp. 661–663.
- ^ Coster-Mullen 2012, pp. 56–57.
- ^ a b Rhodes 1986, p. 654.
- ^ Coster-Mullen 2012, pp. 49–50.
- ^ Coster-Mullen 2012, p. 58.
- ^ Hoddeson et al. 1993, p. 370.
- ^ a b Hoddeson et al. 1993, pp. 368–370.
- ^ Hoddeson et al. 1993, p. 483.
- ^ Coster-Mullen 2012, p. 314.
- ^ "Herbert Lehr". Atomic Heritage Foundation. Archived from the original on January 16, 2021. Retrieved September 8, 2020.
- ^ Bainbridge 1976, p. 15.
- ^ a b Bainbridge 1976, p. 25.
- ^ Hacker 1987, p. 90.
- ^ Norris 2002, p. 402.
- ^ Bainbridge 1976, pp. 29–30.
- ^ Feynman 1985, p. 134.
- ^ a b c Calloway, Larry (July 1995). "The Nuclear Age's Blinding Dawn". Albuquerque Journal. Archived from the original on October 7, 2018. Retrieved February 1, 2019.
- ^ Fleming, Brenda (January 19, 2022). "PHOTO ESSAY: TRINITY SITE". Retrieved July 22, 2024.
- ^ a b Rhodes 1986, p. 656.
- ^ "Edward Teller, RIP". The New Atlantis (3): 105–107. Fall 2003. Archived from the original on March 3, 2016. Retrieved January 7, 2015.
- ^ Rhodes 1986, p. 668.
- ^ Rhodes 1986, p. 677.
- ^ "The atomic bomb test for 'Fat Man' – Hans Bethe". Web of stories. Archived from the original on April 4, 2020. Retrieved October 19, 2016.
- ^ Rhodes 1986, p. 664.
- ^ Johnson, Mark (July 22, 2023). "How Oppenheimer weighed the odds of an atomic bomb test ending Earth". The Washington Post. Archived from the original on July 22, 2023. Retrieved July 22, 2023.
- ^ Hamming 1998, pp. 640–650.
- ^ "Report LA-602, Ignition of the Atmosphere With Nuclear Bombs" (PDF). Los Alamos National Laboratory. Archived (PDF) from the original on March 31, 2020. Retrieved December 29, 2013.
- ^ Bethe 1991, p. 30.
- ^ Lamont 1966, p. 197.
- ^ a b Bainbridge 1975, p. 44.
- ISBN 9781592131921.
- ^ Hoddeson et al. 1993, p. 364.
- ^ "Countdown" (PDF). Los Alamos: Beginning of an Era, 1943–1945. Los Alamos Scientific Laboratory. Archived (PDF) from the original on August 26, 2014. Retrieved August 24, 2014.
- ^ Norris 2002, p. 404.
- ^ Dvorak 2013, pp. 11–13.
- ^ Gutenberg 1946, pp. 327–330.
- ^ S2CID 244134027.
- ^ Parekh et al. 2006, pp. 103–120.
- Hermes, Robert E.; Strickfaden, William B.; Eckles, Jim (2005). "A New Look at Trinitite" (PDF). Nuclear Weapons Journal (2): 2–7. Archived(PDF) from the original on October 19, 2020. Retrieved September 15, 2020.
- ^ Smyth 1945, pp. 247–254.
- ^ "Ralph Smith's eyewitness account of the Trinity trip to watch blast". White Sands Missile Range, Public Affairs Office. Archived from the original on September 4, 2014. Retrieved August 24, 2014.
- ISBN 9781592131921.
- ISBN 9781592131921.
- ISBN 978-3-662-58174-2. Archivedfrom the original on September 28, 2023. Retrieved October 7, 2020.
- ^ "Chronology on Decision to Bomb Hiroshima and Nagasaki". Archived from the original on August 27, 2009. Retrieved November 30, 2006.
- ^ Groves 1962, pp. 325–326.
- ^ Jones 1985, p. 554.
- ^ Laurence 1946, p. 14.
- ^ Monk 2012, pp. 456–457.
- Indian Institute of Technology Kanpur. September 2, 2017. Archivedfrom the original on August 4, 2023. Retrieved November 22, 2019.
- ^ a b "J. Robert Oppenheimer on the Trinity test (1965)". Atomic Archive. Archived from the original on May 16, 2008. Retrieved April 26, 2023.
- ^ "Chapter 11. The Universal Form, text 32". Bhagavad As It Is. Archived from the original on November 17, 2012. Retrieved October 24, 2012.
- ^ "The Eternal Apprentice". Time. November 8, 1948. Archived from the original on December 16, 2013. Retrieved March 6, 2011.
- ^ Jungk 1958, p. 201.
- ^ Hijiya 2000, pp. 123–124.
- ^ Calloway, Larry (May 10, 2005). "The Trinity Test: Eyewitnesses". Archived from the original on October 18, 2005.
- ^ Widner 2009, pp. 10–24.
- ^ Hoddeson et al. 1993, p. 376.
- ^ Hoddeson et al. 1993, p. 359.
- ^ Hoddeson et al. 1993, pp. 375–376.
- ^ "Trinity Test, July 16, 1945, Eyewitness Accounts – Enrico Fermi". Gene Dannen. Archived from the original on November 4, 2014. Retrieved November 4, 2014.
- ^ "Chapter 3 Effects of Nuclear Explosions Section I – General". Archived from the original on January 11, 2016. Retrieved October 29, 2015.
- ^ "Nuclear Events and Their Consequences". Borden Institute. "... approximately 82% of the fission energy is released as kinetic energy of the two large fission fragments. These fragments, being massive and highly charged particles, interact readily with matter. They transfer their energy quickly to the surrounding weapon materials, which rapidly become heated"
- ^ "Nuclear Engineering Overview" (PDF). Technical University Vienna. Archived from the original (PDF) on May 15, 2018. The various energies emitted per fission event p. 4. 167 MeV is emitted by means of the repulsive electrostatic energy between the two daughter nuclei, which takes the form of the kinetic energy of the fission fragments, this kinetic energy results in both later blast and thermal effects. 5 MeV is released in prompt or initial gamma radiation, 5 MeV in prompt neutron radiation (99.36% of total), 7 MeV in delayed neutron energy (0.64%) and 13 MeV in beta decay and gamma decay (residual radiation).
- ^ Widner 2009, pp. 10–25.
- ^ Hoddeson et al. 1993, p. 375.
- ^ Hoddeson et al. 1993, pp. 354–355.
- ^ "Fact Sheet – Operation Trinity" (PDF). Defense Threat Reduction Agency. Archived from the original (PDF) on November 25, 2014. Retrieved November 15, 2014.
- ^ Wellerstein, Alex (November 10, 2014). "The Fat Man's uranium". Restricted Data: The Nuclear Secrecy Blog. Archived from the original on November 13, 2014. Retrieved November 15, 2014.
- ^ Hoddeson et al. 1993, p. 374.
- ^ Reassessment of the Atomic Bomb Radiation Dosimetry for Hiroshima and Nagasaki, Radiation Effects Research Foundation, p. 47, archived from the original on September 24, 2015, retrieved August 25, 2015
- ^ Hoddeson et al. 1993, p. 377.
- ^ "Blast Occurs At Alamogordo Air Base". Clovis News-Journal. July 16, 1945. p. 6. Archived from the original on September 28, 2023. Retrieved January 7, 2016.
- ^ Norris 2002, p. 407.
- ^ a b c Sweeney 2001, pp. 205–206.
- ^ Laurence 1970, pp. 39–41.
- ^ Wellerstein, Alex. "Weekly Document #1: Trinity test press releases (May 1945)". Restricted Data: The Nuclear Secrecy Blog. Archived from the original on May 16, 2021. Retrieved June 12, 2021.
- ^ "Army Ammunition Explosion Rocks Southwest Area". El Paso Herald-Post. July 16, 1945. p. 1. Archived from the original on September 28, 2023. Retrieved January 7, 2016.
- ^ Smyth 1945, pp. vii–viii, 138–139, 247–254.
- ^ a b Jones 1985, p. 517.
- ^ a b Alperovitz 1996, p. 240.
- ^ Jones 1985, p. 518.
- ^ Sherwin 1987, p. 308.
- (PDF) from the original on May 8, 2012. Retrieved May 12, 2012.
- ^ "Trinity Test Downwinders". National Park Service. Archived from the original on August 7, 2023. Retrieved August 9, 2023.
- ^ Hacker 1987, pp. 99–101.
- ^ "Science: Atomic Footprint". Time. September 17, 1945. Archived from the original on February 1, 2014. Retrieved March 16, 2011.
- ^ "Interim Report of CDC'S LAHDRA Project– Appendix N. pp. 17, 23, 37" (PDF). Archived from the original (PDF) on March 17, 2014.
- ^ National Research Council (U.S.). Committee on Fire Research, United States. Office of Civil Defense (1969). Mass burns: proceedings of a workshop, 13–14 March 1968. National Academies. p. 248. Archived from the original on January 26, 2021. Retrieved October 7, 2020.
- ^ Hacker 1987, p. 105.
- ^ Szasz 1984, p. 134.
- ^ "Study to Estimate Radiation Doses and Cancer Risks Resulting from Exposure to Radioactive Fallout from the Trinity Nuclear Test". National Cancer Institute. March 28, 2014. Archived from the original on February 19, 2015. Retrieved September 17, 2021.
- ^ Bouville et al. 2020, p. 405.
- ^ Prokop, Danielle (March 8, 2024). "RECA expansion passes U.S. Senate • Colorado Newsline". Colorado Newsline. Archived from the original on March 8, 2024. Retrieved March 8, 2024.
- ^ a b Ortmeyer, Pat; Makhijani, Arjun (November–December 1997). "Let Them Drink Milk". Bulletin of the Atomic Scientists. Archived from the original on August 20, 2014. Retrieved September 22, 2014. Originally published under the title "Worse Than We Knew".
- .
- ^ a b "Trinity Site Monument". National Science Digital Library. Archived from the original on September 29, 2019. Retrieved August 24, 2014.
- ^ "White Sands Missile Range > Trinity Site > Radioactivity". White Sands Missile Range, Public Affairs Office. March 8, 2022. Archived from the original on March 16, 2022. Retrieved March 8, 2022.
- ^ Richard Greenwood (January 14, 1975). "National Register of Historic Places Inventory-Nomination: Trinity Site". National Park Service. Archived from the original on March 5, 2019. Retrieved June 21, 2009. and "Accompanying 10 photos, from 1974". National Park Service. Archived from the original on March 5, 2019. Retrieved August 24, 2014.
- ^ "Trinity Site National Historic Landmark". National Science Digital Library. Archived from the original on July 2, 2014. Retrieved August 24, 2014.
- ^ "Trinity Atomic Website: Jumbo". Virginia Tech Center for Digital Discourse and Culture. Archived from the original on February 15, 2013. Retrieved February 7, 2013.
- ^ Angelo 2004, p. 601.
- ^ "Chronology: Cowboys to V-2s to the Space Shuttle to lasers". White Sands Missile Range, Public Affairs Office. Archived from the original on October 13, 2014. Retrieved August 24, 2014.
- ^ "Trinity Site". White Sands Missile Range, Public Affairs Office. Archived from the original on July 12, 2015. Retrieved July 11, 2015.
- ^ "WSMR Release 36 – Trinity Site Open House now open twice a year" (PDF). White Sands Missile Range, Public Affairs Office. Archived from the original (PDF) on July 13, 2015. Retrieved July 11, 2015.
- ISBN 0-19-502212-2
- ^ Taurog, Norman (director) (March 7, 1947). The Beginning or the End (Motion picture). United States: Loews Inc. Archived from the original on June 21, 2024. Retrieved December 6, 2023.
- ^ "The Manhattan Project in Popular Culture". The National Museum of Nuclear Science and History. Atomic Heritage Foundation. August 2, 2017. Archived from the original on June 21, 2024. Retrieved December 6, 2023.
- ^ "Oppenheimer". BBC Genome Project. Archived from the original on January 21, 2024. Retrieved December 6, 2023.
- ^ a b Tracy, Marc (July 27, 2023). "'Oppenheimer' Fans Are Rediscovering a 40-Year-Old Documentary". The New York Times. Archived from the original on September 7, 2023. Retrieved December 6, 2023.
- ^ Kunk, Deborah J. – "'Fat Man' Brings Bomb Alive". St. Paul Pioneer Press. October 20, 1989.
- ^ "Trinity and Beyond". Rotten Tomatoes. Archived from the original on December 7, 2023. Retrieved December 6, 2023.
- ^ Genzlinger, Neil (July 27, 2015). "'The Bomb' Helps Return Nukes to the TV Spotlight". The New York Times. Archived from the original on November 14, 2023. Retrieved December 6, 2023.
- ^ Collis, Clark (July 18, 2023). "Christopher Nolan takes us inside creating Oppenheimer's atomic bomb explosion". Entertainment Weekly. Archived from the original on July 22, 2023. Retrieved December 6, 2023.
References
- ISBN 0-679-76285-X.
- Angelo, Joseph A. (2004). Nuclear Technology. Westport, Connecticut: Greenwood Press. OCLC 61253172.
- from the original on September 28, 2023. Retrieved February 10, 2010.
- from the original on September 28, 2023. Retrieved February 1, 2019.
- Baker, Richard D.; Hecker, Siegfried S.; Harbur, Delbert R. (1983). "Plutonium: A Wartime Nightmare but a Metallurgist's Dream" (PDF). Los Alamos Science (Winter/Spring). Los Alamos National Laboratory: 142–151. from the original on September 28, 2023. Retrieved November 22, 2010.
- OCLC 22661282.
- Bouville, André; Beck, Harold L; Thiessen, Kathleen M.; Hoffman, Owen; Potischman, Nancy; Simon, Steven L. (October 2020). "The Methodology Used to Assess Doses from the First Nuclear Weapons Test (Trinity) to the Populations of New Mexico". Health Physics. 119 (4): 400–427. PMID 32881739.
- OCLC 298514167.
- OCLC 314096074.
- Dvorak, Darrell F. (Winter 2013). "The First Atomic Bomb Mission: Trinity B-29 Operations Three Weeks Before Hiroshima". Air Power History. 60 (4): 4–17. ISSN 1044-016X.
- OCLC 10925248.
- Fraikor, Frederick J. (2021). Jumbo: The Secret Vessel Built to Hold an Atomic Bomb. Amazon Digital Services LLC - Kdp. OCLC 1315767481– via Amazon.com.
- OCLC 537684.
- Gutenberg, B. (1946). "Interpretation of Records Obtained from the New Mexico Atomic Test, July 16, 1945" (PDF). Bulletin of the Seismological Society of America. 36: 327–330. (PDF) from the original on April 12, 2019. Retrieved February 1, 2019.
- Hacker, Barton C. (1987). The Dragon's Tail: Radiation Safety in the Manhattan Project, 1942–1946. Berkeley: University of California Press. OCLC 13794117.
- JSTOR 2589247.
- OCLC 8846295. Retrieved February 20, 2014.
Originally published as Los Alamos Report LAMS-2532
- Hijiya, James A. (June 2000). "The Gita of Robert Oppenheimer" (PDF). Proceedings of the American Philosophical Society. 144 (2). ISSN 0003-049X. Archived from the original(PDF) on November 26, 2013. Retrieved December 23, 2013.
- OCLC 26764320.
- Jones, Vincent (1985). Manhattan: The Army and the Atomic Bomb (PDF). Washington, DC: United States Army Center of Military History. (PDF) from the original on September 28, 2013. Retrieved August 25, 2013.
- OCLC 181321.
- Lamont, Lansing (1966) [1965]. Day of Trinity. London: Hutchison. OCLC 749843408.
- OCLC 4354887.
- JSTOR 3955694.
- OCLC 828190062.
- Norris, Robert S. (2002). Racing for the Bomb: General Leslie R. Groves, the Manhattan Project's Indispensable Man. South Royalton, Vermont: Steerforth Press. OCLC 48544060.
- Parekh, P.P.; Semkow, T.M.; Torres, M.A.; Haines, D.K.; Cooper, J.M.; Rosenberg, P.M.; Kitto, M.E. (2006). "Radioactivity in Trinitite six decades later" (PDF). Journal of Environmental Radioactivity. 85 (1): 103–120. (PDF) from the original on April 12, 2019. Retrieved February 1, 2019.
- OCLC 13793436.
- Sherwin, Martin(1987). A World Destroyed: Hiroshima and the Origins of the Arms Race. New York: Vintage Books.
- from the original on February 17, 2021. Retrieved October 29, 2015.
- Sweeney, Michael S. (2001). Secrets of Victory: The Office of Censorship and the American Press and Radio in World War II. Chapel Hill: University of North Carolina Press. OCLC 44420454.
- Szasz, Ferenc Morton (1984). The Day the Sun Rose Twice: The Story of the Trinity Site Nuclear Explosion, July 16, 1945. Albuquerque: UNM Press. OCLC 10779209.
- Szasz, Ferenc Morton (1992). British Scientists and the Manhattan Project: the Los Alamos Years. New York: St. Martin's Press. OCLC 23901666.
- Widner, Thomas (June 2009). Draft Report of the Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project (PDF). Washington, DC: (PDF) from the original on March 3, 2016. Retrieved November 9, 2014.
External links
- "The Trinity Test", a 2020 article by Virginia Grant published in National Security Science magazine
- The Trinity test on the Sandia National Laboratories website
- Trinity Remembered: 60th Anniversary
- "Trinity Site – Manhattan Project National Historical Park" information from the NPS, including a link for the public open house(s)
- Trinity Test Fallout Pattern
- Trinity Test Photographs
- "My Radioactive Vacation", report of a visit to the Trinity site, with pictures comparing its past with its present state
- "Visiting Trinity" Short article by Ker Than at 3 Quarks Daily
- "War Department release on New Mexico test, July 16, 1945", from the Smyth Report, with eyewitness reports from Groves and Farrell (1945)
- The short film Nuclear Test Film – Trinity Shot (1945) is available for free viewing and download at the Internet Archive.
- The short film Nuclear Test Film – Nuclear Testing Review (1945) is available for free viewing and download at the Internet Archive.
- Trinity's cloud (1945), photographs of mushroom cloud
- Video of the site, original blast, and the ranch where the bomb was assembled from 2017
- Historic American Engineering Record (HAER) No. NM-1-A, "White Sands Missile Range, Trinity Site", 106 photos, 11 measured drawings, 116 data pages, 8 photo caption pages
- Rice, James. Downwind of the Atomic State: Atmospheric Testing and the Rise of the Risk Society. (New York University Press, 2023): https://nyupress.org/9781479815340/downwind-of-the-atomic-state/