Twistor theory

Source: Wikipedia, the free encyclopedia.

In

nonlinear differential equations and representation theory, and in physics to general relativity, quantum field theory, and the theory of scattering amplitudes. Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein's theory of general relativity in the late 1950s and in the 1960s and carries a number of influences from that period. In particular, Roger Penrose has credited Ivor Robinson as an important early influence in the development of twistor theory, through his construction of so-called Robinson congruences.[3]

Overview

Projective twistor space is projective 3-space , the simplest

complex vector space
, non-projective twistor space , with a
Weyl) spinors for the conformal group
of Minkowski space; it is the fundamental representation of the spin group of the conformal group. This definition can be extended to arbitrary dimensions except that beyond dimension four, one defines projective twistor space to be the space of projective pure spinors[4] [5] for the conformal group.[6][7]


In its original form, twistor theory encodes

cohomology classes
on regions in . These correspondences have been extended to certain nonlinear fields, including
Yang–Mills fields in the so-called Ward construction;[9] the former gives rise to deformations
of the underlying complex structure of regions in , and the latter to certain holomorphic vector bundles over regions in . These constructions have had wide applications, including inter alia the theory of integrable systems.[10][11][12]

The self-duality condition is a major limitation for incorporating the full nonlinearities of physical theories, although it does suffice for Yang–Mills–Higgs monopoles and instantons (see ADHM construction).[13] An early attempt to overcome this restriction was the introduction of ambitwistors by Isenberg, Yasskin & Green,[14] and their superspace extension, super-ambitwistors, by Edward Witten.[15] Ambitwistor space is the space of complexified light rays or massless particles and can be regarded as a complexification or cotangent bundle of the original twistor description. By extending the ambitwistor correspondence to suitably defined formal neighborhoods, Isenberg, Yasskin and Green[14] showed the equivalence between the vanishing of the curvature along such extended null lines and the full Yang-Mills field equations.[14] Witten[15] showed that a further extension, within the framework of super Yang-Mills theory, including fermionic and scalar fields, gave rise, in the case of N=1 or 2 supersymmetry, to the constraint equations, while for N=3 (or 4), the vanishing condition for supercurvature along super null lines (super ambitwistors) implied the full set of field equations, including those for the fermionic fields. This was subsequently shown to give a 1-1 equivalence between the null curvature constraint equations and the supersymmetric Yang-Mills field equations.[16][17] Through dimensional reduction, it may also be deduced from the analogous super-ambitwistor correspondence for 10-dimensional, N=1 super Yang Mills theory.[18][19]

Twistorial formulae for

S-matrices of Yang–Mills theories,[21] but its gravity degrees of freedom gave rise to a version of conformal supergravity limiting its applicability; conformal gravity is an unphysical theory containing ghosts, but its interactions are combined with those of Yang–Mills theory in loop amplitudes calculated via twistor string theory.[22]

Despite its shortcomings, twistor string theory led to rapid developments in the study of scattering amplitudes. One was the so-called MHV formalism

Grassmann integral formulae[28][29] and polytopes.[30] These ideas have evolved more recently into the positive Grassmannian[31] and amplituhedron
.

Twistor string theory was extended first by generalising the RSV Yang–Mills amplitude formula, and then by finding the underlying

maximal supergravity by David Skinner.[33] Analogous formulae were then found in all dimensions by Cachazo, He & Yuan for Yang–Mills theory and gravity[34] and subsequently for a variety of other theories.[35] They were then understood as string theories in ambitwistor space by Mason & Skinner[36] in a general framework that includes the original twistor string and extends to give a number of new models and formulae.[37][38][39] As string theories they have the same critical dimensions as conventional string theory; for example the type II supersymmetric versions are critical in ten dimensions and are equivalent to the full field theory of type II supergravities in ten dimensions (this is distinct from conventional string theories that also have a further infinite hierarchy of massive higher spin states that provide an ultraviolet completion). They extend to give formulae for loop amplitudes[40][41] and can be defined on curved backgrounds.[42]

The twistor correspondence

Denote Minkowski space by , with coordinates and Lorentzian metric signature . Introduce 2-component spinor indices and set

Non-projective twistor space is a four-dimensional complex vector space with coordinates denoted by where and are two constant

Weyl spinors
. The hermitian form can be expressed by defining a complex conjugation from to its dual by so that the Hermitian form can be expressed as

This together with the holomorphic volume form, is invariant under the group SU(2,2), a quadruple cover of the conformal group C(1,3) of compactified Minkowski spacetime.

Points in Minkowski space are related to subspaces of twistor space through the incidence relation

The incidence relation is preserved under an overall re-scaling of the twistor, so usually one works in projective twistor space which is isomorphic as a complex manifold to . A point thereby determines a line in parametrised by A twistor is easiest understood in space-time for complex values of the coordinates where it defines a totally null two-plane that is self-dual. Take to be real, then if vanishes, then lies on a light ray, whereas if is non-vanishing, there are no solutions, and indeed then corresponds to a massless particle with spin that are not localised in real space-time.

Variations

Supertwistors

Supertwistors are a supersymmetric extension of twistors introduced by Alan Ferber in 1978.[43] Non-projective twistor space is extended by fermionic coordinates where is the number of supersymmetries so that a twistor is now given by with anticommuting. The super conformal group naturally acts on this space and a supersymmetric version of the Penrose transform takes cohomology classes on supertwistor space to massless supersymmetric multiplets on super Minkowski space. The case provides the target for Penrose's original twistor string and the case is that for Skinner's supergravity generalisation.

Higher dimensional generalization of the Klein correspondence

A higher dimensional generalization of the Klein correspondence underlying twistor theory, applicable to isotropic subspaces of conformally compactified (complexified) Minkowski space and its super-space extensions, was developed by J. Harnad and S. Shnider.[4][5]

Hyperkähler manifolds

Hyperkähler manifolds of dimension also admit a twistor correspondence with a twistor space of complex dimension .[44]

Palatial twistor theory

The nonlinear graviton construction encodes only anti-self-dual, i.e., left-handed fields.

holomorphic twistor quantum algebra
.)

See also

Notes

References

  • Roger Penrose (2004), The Road to Reality, Alfred A. Knopf, ch. 33, pp. 958–1009.
  • Roger Penrose and Wolfgang Rindler (1984), Spinors and Space-Time; vol. 1, Two-Spinor Calculus and Relativitic Fields, Cambridge University Press, Cambridge.
  • Roger Penrose and Wolfgang Rindler (1986), Spinors and Space-Time; vol. 2, Spinor and Twistor Methods in Space-Time Geometry, Cambridge University Press, Cambridge.

Further reading

External links