Tyrosine hydroxylase

Source: Wikipedia, the free encyclopedia.
TH
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_000360
NM_199292
NM_199293

NM_009377

RefSeq (protein)

NP_000351
NP_954986
NP_954987
NP_954986.2
NP_954987.2

NP_033403

Location (UCSC)Chr 11: 2.16 – 2.17 MbChr 7: 142.45 – 142.48 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Tyrosine hydroxylase or tyrosine 3-monooxygenase is the

catecholamines. In humans, tyrosine hydroxylase is encoded by the TH gene,[6] and the enzyme is present in the central nervous system (CNS), peripheral sympathetic neurons and the adrenal medulla.[6] Tyrosine hydroxylase, phenylalanine hydroxylase and tryptophan hydroxylase together make up the family of aromatic amino acid hydroxylases
(AAAHs).

Reaction

tyrosine 3-monooxygenase
ExPASy
NiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

Tyrosine hydroxylase catalyzes the reaction in which L-tyrosine is hydroxylated in the meta position to obtain L-3,4-dihydroxyphenylalanine (L-DOPA). The enzyme is an oxygenase which means it uses molecular oxygen to hydroxylate its substrates. One of the oxygen atoms in O2 is used to hydroxylate the tyrosine molecule to obtain L-DOPA and the other one is used to hydroxylate the cofactor. Like the other aromatic amino acid hydroxylases (AAAHs), tyrosine hydroxylase use the cofactor tetrahydrobiopterin (BH4) under normal conditions, although other similar molecules may also work as a cofactor for tyrosine hydroxylase.[7]

The AAAHs converts the cofactor 5,6,7,8-tetrahydrobiopterin (BH4) into tetrahydrobiopterin-4a-carbinolamine (4a-BH4). Under physiological conditions, 4a-BH4 is dehydrated to quinonoid-dihydrobiopterin (q-BH2) by the enzyme pterin-4a-carbinolamine dehydrase (PCD) and a water molecule is released in this reaction.[8][9] Then, the NAD(P)H dependent enzyme dihydropteridine reductase (DHPR) converts q-BH2 back to BH4.[8] Each of the four subunits in tyrosine hydroxylase is coordinated with an iron(II) atom presented in the active site. The oxidation state of this iron atom is important for the catalytic turnover in the enzymatic reaction. If the iron is oxidized to Fe(III), the enzyme is inactivated.[10]

The product of the enzymatic reaction, L-DOPA, can be transformed to dopamine by the enzyme

rate limiting step in the production of catecholamines.[11]

The enzyme is highly specific, not accepting indole derivatives - which is unusual as many other enzymes involved in the production of catecholamines do. Tryptophan is a poor substrate for tyrosine hydroxylase, however it can hydroxylate L-phenylalanine to form L-tyrosine and small amounts of 3-hydroxyphenylalanine.[7][12][13] The enzyme can then further catalyze L-tyrosine to form L-DOPA. Tyrosine hydroxylase may also be involved in other reactions as well, such as oxidizing L-DOPA to form 5-S-cysteinyl-DOPA or other L-DOPA derivatives.[7][14]

Structure

substrate
would enter from.

Tyrosine hydroxylase is a

secondary structures, which doesn't weaken suspicions of it having a disordered overall structure.[20] As for the tetramerization and catalytic domains their structure was found with rat tyrosine hydroxylase using X-ray crystallography.[21][22] This has shown how its structure is very similar to that of phenylalanine hydroxylase and tryptophan hydroxylase; together the three make up a family of homologous aromatic amino acid hydroxylases.[23][24]

Regulation

Tyrosine hydroxylase catalyzes the rate limiting step in catecholamine biosynthesis

Tyrosine hydroxylase activity is increased in the short term by

14-3-3 proteins.[31] Phosphorylation at Ser31 causes a slight increase of activity, and here the mechanism is unknown. Tyrosine hydroxylase is somewhat stabilized to heat inactivation when the regulatory serines are phosphorylated.[28][32]

Tyrosine hydroxylase is mainly present in the cytosol, although it also is found in some extent in the plasma membrane.[33] The membrane association may be related to catecholamine packing in vesicles and export through the synaptic membrane.[33] The binding of tyrosine hydroxylase to membranes involves the N-terminal region of the enzyme, and may be regulated by a three-way interaction between 14-3-3 proteins, the N-terminal region of tyrosine hydroxylase, and negatively charged membranes.[34]

Tyrosine hydroxylase can also be regulated by inhibition. Phosphorylation at Ser40 relieves feedback inhibition by the catecholamines dopamine, epinephrine, and norepinephrine.[35][36] The catecholamines trap the active-site iron in the Fe(III) state, inhibiting the enzyme.[7]

It has been shown that the expression of tyrosine hydroxylase can be affected by the expression of

SRY. The down regulation of the SRY gene in the substantia nigra can result in a decrease in tyrosine hydroxylase expression.[37]

Long term regulation of tyrosine hydroxylase can also be mediated by phosphorylation mechanisms.

Clinical significance

levodopa, extrapyramidal symptoms, ptosis, miosis, and postural hypotension. This is a progressive and often lethal disorder, which can be improved but not cured by levodopa.[39] Due to the low number of patients and overlapping symptoms with other disorders, early diagnosis and treatment remain challenging.[40] Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases, their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies, a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).[41]

Furthermore, alterations in the tyrosine hydroxylase enzyme activity may be involved in disorders such as

Segawa's dystonia, Parkinson's disease and schizophrenia.[21][42] Tyrosine hydroxylase is activated by phosphorylation dependent binding to 14-3-3 proteins.[34] Since the 14-3-3 proteins also are likely to be associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease, it makes an indirect link between tyrosine hydroxylase and these diseases.[43] The activity of tyrosine hydroxylase in the brains of patients with Alzheimer's disease has been shown to be significantly reduced compared to healthy individuals.[44] Tyrosine hydroxylase is also an autoantigen in autoimmune polyendocrine syndrome (APS) type I.[45]

A consistent abnormality in Parkinson's disease is degeneration of dopaminergic neurons in the substantia nigra, leading to a reduction of striatal dopamine levels. As tyrosine hydroxylase catalyzes the formation of L-DOPA, the rate-limiting step in the biosynthesis of dopamine, tyrosine hydroxylase-deficiency does not cause Parkinson's disease, but typically gives rise to infantile parkinsonism, although the spectrum extends to a condition resembling dopamine-responsive dystonia. A direct

cytotoxic effects of L-DOPA.[7] Like other cellular proteins, tyrosine hydroxylase is also a possible target for damaging alterations induced by ROS. This suggests that some of the oxidative damage to tyrosine hydroxylase could be generated by the tyrosine hydroxylase system itself.[7]

Tyrosine hydroxylase can be inhibited by the drug α-methyl-para-tyrosine (

metirosine). This inhibition can lead to a depletion of dopamine and norepinepherine in the brain due to the lack of the precursor L-Dopa (L-3,4-dyhydroxyphenylalanine) which is synthesized by tyrosine hydroxylase. This drug is rarely used and can cause depression, but it is useful in treating pheochromocytoma and also resistant hypertension. Older examples of inhibitors mentioned in the literature include oudenone[46] and aquayamycin.[47]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000180176Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000000214Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 8638482
    .
  6. ^ .
  7. ^ .
  8. ^ .
  9. .
  10. .
  11. ^ .
  12. ^ .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. ^ .
  20. .
  21. ^ .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. ^ .
  29. .
  30. .
  31. .
  32. .
  33. ^ .
  34. ^ .
  35. .
  36. .
  37. .
  38. ^ .
  39. .
  40. .
  41. ^ "Patient registry".
  42. S2CID 46062969
    .
  43. .
  44. .
  45. .
  46. .
  47. .

Further reading

External links