Ureter

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.
(Redirected from
Ureters
)

Ureter
bladder.
Details
PrecursorUreteric bud
SystemUrinary system
ArterySuperior vesical artery, Vaginal artery, Ureteral branches of renal artery
NerveUreteric plexus
Identifiers
Latinureter
MeSHD014513
TA98A08.2.01.001
TA23394
FMA9704
Anatomical terminology]

The ureters are tubes made of

urothelial cells, a type of transitional epithelium, and has an additional smooth muscle layer that assists with peristalsis
in its lowest third.

The ureters can be affected by a number of diseases, including

Congenital abnormalities
that affect the ureters can include the development of two ureters on the same side or abnormally placed ureters. Additionally, reflux of urine from the bladder back up the ureters is a condition commonly seen in children.

The ureters have been identified for at least two thousand years, with the word "ureter" stemming from the stem

CT, and ultrasound have been able to view the ureters. The ureters are also seen from the inside using a flexible camera, called ureteroscopy
, which was first described in 1964.

Structure

The ureters are tubular structures, approximately 20–30 cm (8–12 in) in adults,

psoas major muscle to reach the brim of the pelvis. Here, they cross in front of the common iliac arteries. They then pass down along the sides of the pelvis and finally curve forward and enter the bladder from its left and right sides at the back of the bladder.[2] The ureters are 1.5–6 mm (0.06–0.24 in) in diameter[1] and surrounded by a layer of smooth muscle for 1–2 cm (0.4–0.8 in) near their ends just before they enter the bladder.[2]

The ureters enter the bladder from its back surface, traveling 1.5–2 cm (0.6–0.8 in) before opening into the bladder at an angle on its outer back surface at the slit-like ureteric orifices.[2][3] This location is also called the vesicoureteric junction.[4] In the contracted bladder, they are about 25 mm (1 in) apart and about the same distance from the internal urethral orifice; in the distended bladder, these measurements may be increased to about 50 mm (2 in).[2]

A number of structures pass by, above, and around the ureters on their path down from the kidneys to the bladder.

uterine arteries travel on top for a short (2.5 cm (1 in)) period. They then pass by the cervix, traveling inward towards the bladder.[2]

Blood and lymphatic supply

The arteries which supply the ureter vary along its course. The upper third of the ureter, closest to the kidney, is supplied by the

inferior vesical arteries.[1] The arterial supply can be variable, with arteries that contribute include the middle rectal artery, branches directly from the aorta,[1] and, in women, the uterine and vaginal arteries.[2]

The arteries that supply the ureters end in a network of vessels within the adventitia of the ureters.[1] There are many connections (anastamoses) between the arteries of the ureter,[2] particularly in the adventitia,[5] which means damage to a single vessel does not compromise the blood supply of the ureter.[2][5] Venous drainage mostly parallels that of the arterial supply;[5][2] that is, it begins as a network of smaller veins in the adventitia; with the renal veins draining the upper ureters, and the vesicular and gonadal veins draining the lower ureters.[1]

Lymphatic drainage depends on the position of lymphatic vessels in the ureter.

common iliac lymph nodes, or lower down in the pelvis to the common, external, or internal iliac lymph nodes.[2]

Nerve supply

The ureters are richly supplied by nerves that form a network (plexus) of nerves, the ureteric plexus that lies in the adventitia of the ureters.[2] This plexus is formed from a number of nerve roots directly (T9-12, L1, and S2-4), as well as branches from other nerve plexuses and nerves; specifically, the upper third of the ureter receives nerve branches from the renal plexus and aortic plexus, the middle part receives branches from the upper hypogastric plexus and nerve, and the lower ureter receives branches from the lower hypogastric plexus and nerve.[2] The plexus is in the adventitia. These nerves travel in individual bundles and along small blood vessels to form the ureteric plexus.[2] Sensation supplied is sparse close to the kidneys and increases closer to the bladder.[2]

Sensation to the ureters is provided by nerves that come from T11 - L2 segments of the spinal cord.[2] When pain is caused, for example by spasm of the ureters or by a stone, the pain may be referred to the dermatomes of T11 - L2, namely the back and sides of the abdomen, the scrotum (males) or labia majora (females) and upper part of the front of the thigh.[2]

Microanatomy

Microscopic cross-section of the ureter, showing the epithelium (purple cells) sitting next to the lumen. A large amount of muscle fibres can be seen surrounding the epithelium, and the adventitia sits beyond this

The ureter is lined by

flatter cells when distended. Below the epithelium sits the lamina propria. The lamina propria is made up of loose connective tissue with many elastic fibers interspersed with blood vessels, veins and lymphatics. The ureter is surrounded by two muscular layers, an inner longitudinal layer of muscle, and an outer circular or spiral layer of muscle.[6][7] The lower third of the ureter has a third muscular layer.[7] Beyond these layers sits an adventitia containing blood vessels, lymphatic vessels, and veins.[7]

Development

Image showing the bottom part of an embryo 4 - 5 weeks old. Here, the ureter (in orange) can be seen emerging from the bottom of the mesonephric duct (labelled "Wolffian duct"), connected to the primitive bladder. Image from Gray's Anatomy 1918 edition.

The ureters develop from the ureteric buds, which are outpouchings from the mesonephric duct. This is a duct, derived from mesoderm, found in the early embryo.[8] Over time, the buds elongate, moving into surrounding mesodermal tissue, dilate, and divide into left and right ureters. Eventually, successive divisions from these buds form not only the ureters, but also the pelvis, major and minor calyces, and collecting ducts of the kidneys.[8]

The mesonephric duct is connected with the cloaca, which over the course of development splits into a urogenital sinus and the anorectal canal.[8] The urinary bladder forms from the urogenital sinus. Over time, as the bladder enlarges, it absorbs the surrounding parts of the primitive ureters.[8] Finally, the entry points of the ureters into the bladder move upwards, owing to the upward migration of the kidneys in the developing embryo.[8]

Function

The ureters are a component of the urinary system. Urine, produced by the kidneys, travels along the ureters to the bladder. It does this through regular contractions called peristalsis.[2]

  • Ultrasound showing a jet of urine entering the bladder (large black section) through the ureter.
    Ultrasound showing a jet of urine entering the bladder (large black section) through the ureter.

Clinical significance

Ureteral stones

A giant ureteral stone with dimensions of approximately 6 × 5 × 4 cm and weighing 61 grams extracted from the left ureter of a 19-year old male

A

swollen due to blocked flow of urine.[9]
It is classically described that there are three sites in the ureter where a kidney stone will commonly become stuck: where the ureter meets the renal pelvis; where the iliac blood vessels cross the ureters; and where the ureters enter the urinary bladder,[9] however a retrospective case study, which is a primary source, of where stones lodged based on medical imaging did not show many stones at the place where the iliac blood vessels cross.[11]

Most stones are compounds containing

nonsteroidal antiinflammatories.[10] Small stones (< 4mm) may pass themselves; larger stones may require lithotripsy, and those with complications such as hydronephrosis or infection may require surgery to remove.[10]

Reflux

urinary catheter, and whether a child is toilet trained.[12] Whether these investigations are performed at the first time a child has an illness, or later and depending on other factors (such as if the causal bacteria is E. coli) differ between US, EU and UK guidelines.[12]

Management is also variable, with differences between international guidelines on issues such as whether

prophylactic antibiotics should be used, and whether surgery is recommended.[12] One reason is most instances of vesicoureteral reflux improve by themselves.[12] If surgery is considered, it generally involves reattaching the ureters to a different spot on the bladder, and extending the part of the ureter that it is within the wall of the bladder, with the most common surgical option being Cohen's cross-trigonal reimplantation.[12]

Anatomical and surgical abnormalities

Blockage, or obstruction of the ureter can occur,

kidney transplant or due to past surgery for vesicoureteric reflux, that site may also become narrowed.[15][1]

A narrowed ureter may lead to ureteric enlargement (

Cancer

squamous cell carcinoma if the type of cells lining the urethra have changed due to chronic inflammation, such as due to stones or schistosomiasis.[18]

Investigations performed usually include collecting a sample of urine for an inspection for malignant cells under a microscope, called

tumour grade, with a worse prognosis associated with an ulcerating lesion.[18]

Injury

Injuries to the ureter can occur after penetrating abdominal injuries, and injuries at high speeds followed by an abrupt stop (such as a high speed car accident).

Imaging

Several forms of medical imaging are used to view the ureters and urinary tract.

retrograde pyelogram is where dye is injected into the urinary tract via a catheter, and flows backwards into the ureters.[22] More invasive forms of imaging include ureteroscopy, which is the insertion of a flexible endoscope into the urinary tract to view the ureters.[23] Ureteroscopy is most commonly used for medium to large-sized stones when less invasive methods of removal cannot be used.[23]

Other animals

All

ventral to the vas deferens in male placental mammals, but dorsal to the vas deferens in marsupials.[27]

History

The word "ureter" comes from the Ancient Greek noun οὖρον, ouron, meaning "urine", and the first use of the word is seen during the era of Hippocrates to refer to the urethra.[28] The anatomical structure of the ureter was noted by 40 AD. However, the terms "ureter" and "urethra" were variably used to refer to each other thereafter for more than a millennium.[28] It was only in the 1550s that anatomists such as Bartolomeo Eustachi and Jacques Dubois began to use the terms to specifically and consistently refer to what are in modern English called the ureter and the urethra.[28] Following this, in the 19th and 20th centuries multiple terms relating to the structures such as ureteritis and ureterography, were coined.[28]

Ureters

Kidney stones have been identified and recorded about as long as written historical records exist.[29] The urinary tract including the ureters, as well as their function to drain urine from the kidneys, has been described by Galen in the second century AD.[30]

The first to examine the ureter through an internal approach, called ureteroscopy, rather than surgery was

fiber optics, which occurred in 1964.[29] The insertion of a drainage tube into the renal pelvis, bypassing the ureters and urinary tract, called nephrostomy, was first described in 1941. Such an approach differed greatly from the open surgical approaches within the urinary system employed during the preceding two millennia.[29]

The first

intravenous urogram, in which contrast is injected into a vein and highlights the kidney and, when excreted, the urinary tract.[31] Things improved with the development by Moses Swick and Leopold Lichtwitz in the late 1920s of relatively nontoxic contrast media, with controversy surrounding publication as to who was the primary discoverer.[31] Side-effects associated with imaging improved even more when Tosten Almen published a ground-breaking thesis in 1969 based on the less toxic low-osmolar contrast media, developed based on swimming experiences in lakes with different salinity.[31]

References

  1. ^
    ISBN 9781119245193. {{cite book}}: |last1= has generic name (help)CS1 maint: multiple names: authors list (link
    )
  2. ^
    OCLC 920806541.{{cite book}}: CS1 maint: location missing publisher (link
    )
  3. OCLC 920806541.{{cite book}}: CS1 maint: location missing publisher (link
    )
  4. .
  5. ^ a b c Wein, Alan J. (2011). Campbell-Walsh Urology (10th ed.). Elsevier. p. 31.
  6. ISBN 0-3230-3663-5.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  7. ^ .
  8. ^ .
  9. ^ .
  10. ^
    ISBN 978-0-7020-7028-0. {{cite book}}: |first4= has generic name (help
    )
  11. .
  12. ^ .
  13. ^
    ISBN 978-0-7020-7028-0. {{cite book}}: |first4= has generic name (help
    )
  14. ^ a b c d e "Ureteral obstruction - Symptoms and causes". Mayo Clinic. 2020. Retrieved 6 July 2020.
  15. S2CID 71928271
    .
  16. .
  17. ^ R, Martin; Baker, H (14 October 2019). "Nursing care and management of patients with a nephrostomy". Nursing Times.
  18. ^
    ISBN 978-0-7020-7028-0. {{cite book}}: |first4= has generic name (help
    )
  19. .
  20. ^ .
  21. ^ Santucci, Richard A. "Ureteral Trauma". Medscape. Retrieved 11 April 2012.
  22. ^
    ISBN 978-0-7020-7028-0. {{cite book}}: |first4= has generic name (help
    )
  23. ^ a b "Ureteroscopy". National Kidney Foundation. 2020. Retrieved 2020-07-04.
  24. ^ .
  25. . Retrieved 6 May 2013.
  26. .
  27. .
  28. ^ .
  29. ^ .
  30. .
  31. ^ .