Ursell number

Source: Wikipedia, the free encyclopedia.
Wave characteristics

In

dimensionless parameter is named after Fritz Ursell, who discussed its significance in 1953.[1]

The Ursell number is derived from the Stokes wave expansion, a perturbation series for nonlinear periodic waves, in the long-wave limit of shallow water – when the wavelength is much larger than the water depth. Then the Ursell number U is defined as:

which is, apart from a constant 3 / (32 π2), the ratio of the amplitudes of the second-order to the first-order term in the free surface elevation.[2] The used parameters are:

  • H : the
    trough
    ,
  • h : the mean water depth, and
  • λ : the wavelength, which has to be large compared to the depth, λh.

So the Ursell parameter U is the relative wave height H / h times the relative wavelength λ / h squared.

For long waves (λh) with small Ursell number, U ≪ 32 π2 / 3 ≈ 100,

Korteweg–de Vries equation or Boussinesq equations
– has to be used. The parameter, with different normalisation, was already introduced by
George Gabriel Stokes in his historical paper on surface gravity waves of 1847.[5]

Notes

  1. .
  2. ^ Dingemans (1997), Part 1, §2.8.1, pp. 182–184.
  3. ^ This factor is due to the neglected constant in the amplitude ratio of the second-order to first-order terms in the Stokes' wave expansion. See Dingemans (1997), p. 179 & 182.
  4. ^ Dingemans (1997), Part 2, pp. 473 & 516.
  5. ^ Stokes, G. G. (1847). "On the theory of oscillatory waves". Transactions of the Cambridge Philosophical Society. 8: 441–455.
    Reprinted in: Stokes, G. G. (1880). Mathematical and Physical Papers, Volume I. Cambridge University Press. pp. 197–229.

References